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Elastic contact between randomly rough surfaces: Comparison of theory with numerical results
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One of us recently developed a theory of contact mechanics for randomly rough surfaces@B.N.J. Persson, J.
Chem. Phys.115, 3840 ~2001!#. In this paper we compare the results of the analytical model with~exact!
numerical results. We also present some analytical results related to the theory.
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I. INTRODUCTION

Even a highly polished surface has surface roughnes
many different length scales. When two bodies with nom
nally flat surfaces are brought into contact, the area of
contact will usually only be a small fraction of the nomin
contact area. We can visualize the contact regions as s
areas where asperities from one solid are squeezed ag
asperities of the other solid; depending on the conditions
asperities may deform elastically or plastically.

How large is the area ofreal contact between a solid
block and the substrate? This fundamental question has
tremely important practical implications. For example, it d
termines the contact resistivity and the heat transfer betw
the solids. It is also of direct importance for sliding friction1

e.g., the rubber friction between a tire and a road surface,
it has a major influence on the adhesive force between
solids blocks in direct contact.

One of us recently developed a theory of cont
mechanics,2 valid for randomly rough~e.g., self-affine frac-
tal! surfaces.3 In the context of rubber friction, which moti
vated this theory, mainly elastic deformation occurs. Ho
ever, the theory can also be applied when both elastic
plastic deformations occur in the contact areas. This cas
of course, relevant to almost all materials other than rub

In this paper we present results related to the theory,2 and
also numerical results, obtained by discretizing the ba
equations of elasticity, to test the accuracy of the theory.
find that the theory is in good agreement with the numer
calculations. The analytical model, in addition to providi
deeper insight into the nature of the area of contact, can,
only a small computational effort, be applied to surfaces w
arbitrary surface roughness. As shown elsewhere,2 the theory
can also be applied to viscoelastic solids, and enters a
important ingredient in a theory of sliding friction recent
developed for viscoelastic materials, e.g., rubber.2

The basic idea behind the contact theory is that it is v
important not toa priori exclude any roughness length sca
from the analysis. Thus ifA(l) is the ~apparent! area of
contact on the length scalel @more accurately, wedefine
A(l) to be the area of real contact if the surface would
smooth on all length scales shorter thanl; see Fig. 1#, then
we study the functionP(z)5A(l)/A(L) which is the rela-
tive fraction of the rubber surface area where contact occ
on the length scalel5L/z ~where z>1), with P(1)51.
0163-1829/2002/65~18!/184106~7!/$20.00 65 1841
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HereA(L)5A0 denotes the macroscopic contact area@L is
the diameter of the macroscopic contact area, so thatA0
'L2#.

We briefly review earlier work on contact mechanics. T
paper by Hertz4 gave the solution for the frictionless norm
contact of two elastic bodies of quadratic profile. He fou
that the area of real contact varies nonlinearly with the lo
or squeezing force;FN

2/3. In 1957 Archard5 applied the
Hertz solution to the contact between rough surfaces,
showed that for a simple fractal-like model, where sm
spherical bumps~or asperities! were distributed on top of
larger spherical bumps and so on, the area of real con
varies nearly linearly with FN . A similar conclusion was
reached in Refs. 6–8, whose authors again assumed as
ties with spherical summits~of identical radius! with a
Gaussian distribution of heights. A more general contact m
chanics theory was developed by Bushet al.9,10 They ap-
proximated the summits by paraboloids and applied the c
sical Hertzian solution for their deformation. The heig
distribution was described by a random process, and t
found that

FIG. 1. A rubber ball squeezed against a hard, rough, subst
Left: the system at two different magnifications. Right: The area
contactA(l) on the length scalel is defined as the area of rea
contact when the surface roughness on shorter length scales thl
has been removed~i.e., the surface has been ‘‘smoothed’’ on leng
scales shorter thanl).
©2002 The American Physical Society06-1
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at low squeezing force the area of real contact increases
early withFN . The theory described below will be compare
to the results of Bushet al. in Sec. IV.

II. THEORY

We briefly review the theory presented in Ref. 2. Fro
contact mechanics~see, e.g., Ref. 8! it is known that in the
frictionless contact of elastic solids with rough surfaces,
contact stresses depend only upon the shape of the ga
tween them before loading. Thus, without loss of genera
the actual system may then be replaced by a flat elastic
face @elastic modulusE and Poisson ration, related to the
original quantities via (12n2)/E5(12n1

2)/E11(1
2n2

2)/E2# in contact with a rigid body having a surfac
roughness profile, which result in the same undeformed
between the surfaces.

Consider a system at the length scalel5L/z, whereL is
of order the diameter of the nominal contact area. We de
qL52p/L, and writeq5qLz. Let P(s,z) denote the stres
distribution in the contact areas under the magnificationz.
The functionP(s,z) satisfies the differential equation~see
Ref. 2!:

]P

]z
5G8~z!s0

2]2P

]s2 , ~1!

whereG8(z) denotes thez derivative of the function

G~z!5
p

4 F E

~12n2!s0
G2E

qL

zqL
dqq3C~q!. ~2!

The surface roughness power spectra

C~q!5
1

~2p!2E d2x^h~x!h~0!&e2 iq•x,

wherez5h(x) is the height of the surface above a flat re
erence plane~chosen so that̂h&50), and^•••& stands for
an ensemble average.

Let us write

P~s,1!5P0~s!.

If we assume a constant pressure in the nominal contact a
thenP0(s)5d(s2s0).

Equation~1! is a diffusion-type equation, where time
replaced by the magnificationz, and the spatial coordinat
by the stresss ~and where the ‘‘diffusion constant’’ depend
on z). Hence, when we studyP(s,z) on shorter and shorte
length scales~corresponding to increasingz), the P(s,z)
function will become broader and broader ins space. We
can take into account that detachment will actually oc
when the local stress reachess50 ~we assume no adhesion!
via the boundary condition~see Appendix B!

P~0,z!50.

We assume that only elastic deformation occurs~i.e., the
yield stresssY→`). In this case
18410
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P~z!5E
0

`

dsP~s,z!.

It is straightforward to solve Eq.~1! with the boundary con-
ditions P(0,z)50 andP(`,z)50 to obtain

P~z!5
2

pE0

`

dx
sinx

x
exp@2x2G~z!#. ~3!

We now consider the limits0!E, which is satisfied in
most applications. In this case, for mostz values of interest,
G(z)@1, so that onlyx!1 will contribute to the integral in
Eq. ~3!, and we can approximate sinx'x and

P~z!'
2

pE0

`

dx exp@2x2G~z!#5@pG~z!#21/2. ~4!

Thus, within this approximation, using Eqs.~2! and ~4! we
obtain P(z)}s0, so that the area of real contact is propo
tional to the load.

The theory above is valid for surfaces with arbitrary ra
dom roughness, but will now be applied to self-affine frac
surfaces. It has been found that many ‘‘natural’’ surfac
e.g., surfaces of many materials generated by fracture, ca
approximately described as self-affine surfaces over a ra
wide roughness size region. A self-affine fractal surface
the property that if we make a scale change that is differ
for each direction, then the surface does not change
morphology.11 Recent studies have shown that even asp
road tracks~of interest for rubber friction! are ~approxi-
mately! self-affine fractal, with an upper cutoff lengthl0
52p/q0 of the order of a few mm.12 For a self-affine fractal
surfaceC(q)5C0 for q,q0, while for q.q0,

C~q!5C0S q

q0
D 22(H11)

, ~5!

whereH532D f ~where the fractal dimension 2,D f,3),
and whereq0 is the lower cutoff wave vector, andC0 is
determined by the rms roughness amplitude,^h2&5h0

2/2 via
C05a(h0 /q0)2H/2p where a51/@11H2(qL /q0)2H#.
Note that forqL /q0!1, a'1/(11H) is independent ofL.

Substituting Eq.~5! into Eq. ~2!, defining q5qLz and
assumingq@q0 gives ~also see Appendix A!

G~z!'S q0h0

4~12n2! D
2 aH

~12H !S E

s0
D 2S q

q0
D 2(12H)

,

so that

P~z!'
4~12n2!

q0h0
S 12H

paH D 1/2s0

E S q

q0
D H21

.

But s05FN /A0, so that the~apparent! area of contact on the
length scalel52p/q becomes

A~l!5A0P~z!5
4~12n2!

q0h0
S 12H

paH D 1/2FN

E S l

l0
D 12H

. ~6!

If l1 denotes the low-distance cutoff in the self-affine frac
distribution~which cannot be smaller than an atomic dime
6-2
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sion!, then Eq.~6! shows that thearea of real contact A(l1)
is proportional to the load. We note that if the surface
self-affine fractal the whole way up to the lateral sizeL of the
nominal contact area, thenq052p/L and Eq.~6! predict that
A(l) is proportional toL.

III. NUMERICAL RESULTS AND COMPARISON WITH
OTHER CALCULATIONS

In this section we consider the stress distribution at
interface, assuming that only elastic deformation occurs.
sume first that a rectangular block with a nominally flat s
face is squeezed against a nominally flat substrate. We
glect edge effects and assume the initial stress distributi

P~s,1!5d~s2s0!,

wheres0 is the average stress. The stress distribution for
case was calculated in Ref. 2,

P~s,z!5 (
n51

`
2

sY
sinS nps0

sY
D sinS nps

sY
D

3expF2S np

sY
D 2

s0
2G~z!G ,

where the elastic limit corresponds tosY→` ~in numerical
calculations one can keepsY finite but large!. In Fig. 2 we
show the stress distribution forG50, 0.6, and 2. In the
figure sH denotes the maximum stress in the macrosco
contact area, which in the present case equals the ave
stresss0 since the stress forz51 is constant.

Since the equation of motion forP(s,z) is linear, we can
obtain the stress distribution for any otherP(s,1)5P0(s)
via

FIG. 2. The normal stress distribution in the contact area
tween a rectangular block and a nominally flat substrate. HeresH

5s0 is the maximum stress in the contact area whenz51. The
pressure is shown forG50, 0.6, and 2. The~apparent! contact area
in the three different cases isA0 , 0.64A0, and 0.38A0.
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P~s,z!5 (
n51

`
2

sY
E

0

sY
ds8P0~s8!sinS nps8

sY
D sinS nps

sY
D

3expF2S np

sY
D 2

s0
2G~z!G . ~7!

Let us first consider a circular Hertzian contact as arises, e
if a spherical elastic body is squeezed against a nomin
flat substrate. We have

s~x!5sHF12S r

r H
D 2G1/2

, ~8!

whereL52r H is the diameter of the contact area andsH the
maximum ~macroscopic! contact pressure. The correspon
ing stress probability distribution function is

P~s,1!5
1

pr H
2 E d2xd@s2s~x!#5

2s

sH
2

~9!

for s,sH , and zero otherwise. Note that the average pr
sures052sH/3. TheG50 curve in Fig. 3 shows this stres
distribution. Substituting Eq.~9! into Eq. ~7! gives

P~s,z!5 (
n51

`
2

sY
BnsinS nps

sY
DexpF2S np

sY
D 2

s0
2G~z!G ,

~10!

where

Bn52S singn

gn
2

2
cosgn

gn
D

and wheregn5npsH /sY . The resulting stress distributio
is shown in Fig. 3 for G50, 0.6, and 2.

Finally, let us consider a cylinder squeezed agains
nominally flat substrate. In this case the macroscopic p
sure in the nominal contact region is of the Hertz form

- FIG. 3. The normal stress distribution in the contact area
tween a ball and a nominally flat substrate. The pressure is sh
for G50, 0.6, and 2. The~apparent! contact area in the three case
is A0 , 0.62A0, and 0.38A0.
6-3
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s~x!5sHF12S x

aH
D 2G1/2

, ~11!

whereL52aH is the width of the contact area andsH the
maximum ~macroscopic! contact pressure. The correspon
ing stress probability distribution is

P~s,1!5
1

2aH
E

2aH

aH
dxd@s2s~x!#5

s

sH
2 F12S s

sH
D 2G21/2

~12!

for s,sH , and zero otherwise. Note that the average pr
sures05psH/4. TheG50 curve in Fig. 4 shows this stres
distribution. Substituting Eq.~12! into Eq. ~7! givesP(s,z)
of the form of Eq.~10!, with

Bn5E
0

1

dx x~12x2!21/2sin~gnx!

wheregn5npsH /sY . Figure 4 shows the stress distributio
for G50, 0.6, and 2.

Bucheret al. studied the contact between a rail and wh
using a numerical method which is essentially exact wh
the grid size is made small enough.13 The wheel is treated a
a cylinder, and the rail as a nominally flat substrate occu
ing thexy plane. The two surfaces are randomly rough, a
the contact is assumed to be purely elastic. To simplify
calculations, the asperities are assumed to have a con
height in they direction, so that the deformation field
two-dimensional~the xz plane!. The one-dimensional~1D!-
power spectraC̄(q) is shown in Fig. 5, whereq is measured
in units of (mm)21 and C̄ in units of (mm)3:

C̄~q!5
1

2pE dx^h~x!h~0!&e2 iqx.

For a self-affine fractal surface, the 1D power spectra sc
as;q22H21 for q.q0 @for the 2D power spectra the scalin
is instead;q22H22; see Eq.~5!#. From the slope ('22) of

FIG. 4. The normal stress distribution in the contact area
tween a cylinder and a nominally flat substrate. The pressur
shown for G50, 0.6, and 2. The~apparent! contact area in the
three different cases isA0 , 0.61A0, and 0.37A0.
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the curve forq.q0, whereq0'23104m21, we obtain22
522H21 so that the roughness exponentH'0.5 and the
fractal dimensionD f532H'2.5.

Figure 6 shows the stress distribution as obtained fr
numerical calculations. IfA0 denotes the nominal contac
area, then the area of contact at magnificationsz5100 and
400 becomes'0.62A0 and 0.33A0. Note that the stress dis
tributions in Fig. 6 are similar to those in Fig. 4, and we c
therefore compare the calculated contact areas (A0 , 0.61A0,
and 0.37A0) with those obtained in the numerical study (A0 ,
0.62A0, and 0.33A0) which are in relative good agreemen

In the numerical calculations by Bucheret al., the width
of the Hertzian contact area wasL52aH'1 cm, and the
maximum Hertzian pressurepH5542 MPa, giving an aver-
age pressures0'426 MPa. Using Eq.~6! with the elastic
modulusE5131011 Pa, n50.3, andh050.95 mm, at the
magnificationz5400 ~corresponding tol50.0025 cm) we
obtain the area of real contact'0.2A0, which is relative
close to the value obtained in the numerical study.

As a second example of contact between randomly ro
surfaces, consider the results of Borri-Brunettoet al.14 Using
an essential exact numerical method, they studied how
area of contact depend on the magnification when a s
with a rough surface~self-affine fractal with the fractal di-
mensionD f52.3) is squeezed against a flat substrate.

Figure 7 shows the area of contact,A, as a function of the
applied loadFN ~from Ref. 14!. Results are presented for fiv
different magnificationsL/l. Note that within the accuracy
of the calculations,A;FN . Also note that the slope of the
curves decreases with increasing magnification; if we~arbi-
trarily! denote the slope for the magnificationL/l5256 with
unity, then the slopes forL/l5128, 64, 32, and 16 will be
1.24, 1.57, 1.93, and 2.32. This is in accordance with
theory presented above@see Eq.~6!#, where the area of con
tact on the length scalel is proportional to A(l)

-
is

FIG. 5. The 1D roughness power spectraC̄(q) ~for the com-
bined wheel-rail system! as a function of the wave vectorq of the
surface roughness. Forq.q0, where q0'23104m, the power

spectraC̄;q22, corresponding to a self-affine fractal surface wi
the fractal dimensionD f'2.5. q is measured in units of (mm)21

andC̄ in units of (mm)3. Adapted from Ref. 13.
6-4
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;(l/L)12H. SinceD f52.3 we have 12H5D f2250.3, so
that the theoretical slopes are 1.23, 1.52, 1.87, and 2.30
excellent agreement with the numerical results. Let us a
compare the numerical value of the slope for magnificat
L/l5256 with the theoretical prediction@Eq. ~6!#. Since the
surfaces are self-affine fractal the whole way up to the lin
size of the contact area, we will takeq052p/L in Eq. ~6!.
We note that this expression forq0 is somewhat uncertain
sinceL is the width of the square nominal contact area u
in the computer simulations, whileq0 in the theory is a radia
long-distance cutoff wave vector. Using the known elas
modulus~and Poisson ratio!, the linear size of the contac
area, and the rms roughness amplitude, we obtain the t
retical slope 6310210N21, to be compared to the slope i
Fig. 7: 8310210N21.

Borri-Brunettoet al. also studied the dependence ofA on
the load~or normal force! FN at a fixed magnificationL/l
5128, for surfaces with three different fractal dimensio
namely,D f52.1, 2.3, and 2.5. They again observed a lin
relation betweenA and FN but with different slopes: if we
~arbitrarily! denote the slope forD f52.5 with unity, then the

FIG. 6. The normal stress distribution in the contact area
tween a cylinder and a flat~model of rail-wheel contact problem!.
The Hertzian stress distribution extend overL'1 cm. The stress
distribution has been calculated numerically with 4999 grid poi
~see Ref. 13!. The ~apparent! contact area in the three differen
cases isA0 , 0.62A0, and 0.33A0.
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slopes forD f52.3 and 2.1 will be 2.0 and 3.1. Using th
expression forG derived in Appendix B~with qL5q0, since
the generated surfaces where self-affine fractal right up to
lateral size of the nominal contact area! we obtain the theo-
retical slopes 1.8 and 3.0, again in good agreement with
numerical results. Finally, we note that if the surfaces
self-affine fractal the whole way up to the lateral sizeL of the
nominal contact area, thenq052p/L and Eq.~6! predict that
A(l) ~at a fixed magnification! is proportional toL. This is
also in excellent agreement with our numerical studies.15

IV. DISCUSSION

The present theory predicts that the area of contact
creases linearly with the load for small load. In the stand
theory of Greenwood and Williamson7 this result holds only
approximately and comparison of the prediction of th
theory with the present theory is therefore difficult. Bu
et al.9 developed a more general and accurate contact the
where the summits are approximated by paraboloids
which they apply the Hertzian contact theory. They fou
that at small load the area of contact depends linearly on
load according to

A

A0
5~12n2!

FN

E S E
0

`

dqq3C~q! D 21/2

.

This result is very similar to the prediction of the prese
theory where, for a small load, from Eqs.~2! and ~4!,

A

A0
5

2

p
~12n2!

FN

E S E
0

`

dqq3C~q! D 21/2

.

Thus our contact area is a factor of 2/p smaller than pre-
dicted by the theory of Bushet al. The theories of both
Greenwood and Williamson and Bushet al., assumed that
the asperity contact regions are independent. However, a
show below, for real surfaces~which always have surface
roughnesses on many different length scales! this will never
be the case even at very low nominal contact pressures
now argue that this may be the origin of the 2/p difference

FIG. 7. The area of contact,A, as a function of the applied load
FN . Results are presented for five different magnificationsL/l.
The fractal dimension isD f52.3. Adapted from Ref. 14.
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between our theory~which assumes roughness on many d
ferent length scales! and the result of Bushet al.

Consider the contact between two solids at a very l
nominal contact pressure. Consider first the system on
longest length scalel0. On this length scale the solids wi
make contact at a low concentration of~widely separated!
contact areas; see Fig. 8. Since the separation between
macrocontact areas is very large, we can neglect the inte
tion between the macrocontact areas; in this case
Greenwood-Williamson theory~and any other of the stan
dard contact theories! predicts that the local contact pressu
will be of order;Eq0h0. Thus the~average! pressure in the
contact regions on the longest length scale isindependentof
the nominal contact pressures05FN /A0. Now each macro-
contact area is covered by smaller asperities, and the sm
asperities by even smaller asperities, and so on. It is eas
see that at a short enough length scale the small-asp
contact regions will be very closely separated, and it is the
fore impossible to neglect the interaction between the asp
ties at short enough length scales. We now show that inc
ing the interaction between the small-sized asperities
tend to decrease the contact area in accordance with th
sult of our theory.

Consider two closely spaced asperities with spher
cups with identical radii of curvature but with differen
heights, as illustrated in Fig. 9. Assume that a flat rigid s
face is squeezed against the rough surface. Let us first
glect the interaction between the asperities. If the flat surf
makes contact with both asperities@see Fig. 9~a!#, then ac-
cording to Hertz contact theory the area of real contac
proportional to

FIG. 8. The contact between two elastic solids. At a low nom
nal squeezing pressure, at the longest length scalel0 a low concen-
tration of contact regions occurs, and the lateral~elastic! coupling
between these macrocontact areas can be neglected. The~average!
pressure in such a macrocontact area is independent of the ap
pressure. The asperity contact regions within each macrocon
area will, on a short enough length scale, be so closely spaced
the lateral ~elastic! interaction between these microasperity~or
nanoasperity! contact regions must be taken into account.
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A5a~F1
2/31F2

2/3!,

whereF1 andF2 are the forces acting on the two asperitie
and wherea depends on the elastic modulus and the radius
curvature of the asperities. Let us now calculate the are
contact when the lateral interaction between the asperitie
included. First note that, if we apply a forceF5F11F2 to
the higher asperity, this will not only compress this asper
but will also lower the other asperity as a result of the elas
deformation of the solid. We now assume that the result
displacement of the lower asperity is so large that no con
occur with the rigid plane@see Fig. 9~b!#. Thus in this case
the contact area is

A85aF2/35a~F11F2!2/3,A.

Thus, including the lateral interaction between the asperi
will reduce the area of real contact. This effect is complet
general, and not limited to the simple case studied abov

V. SUMMARY AND CONCLUSION

We have studied the contact stress distributionP(s,z)
and shown thatP(s,z);s ass→0. The results forP(s,z)
of the analytical model has been compared with~exact! nu-
merical results for the contact between a cylinder and
nominal flat substrate with surface roughness on many
ferent length scales. The theory is in good agreement w
the numerical results. The theory predicts that the area
contact in most cases varies linearly with the load, and tha
depends on the magnificationL/l asA(l);(l/L)12H; both
predictions are in excellent agreement with~exact! numerical
results.
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FIG. 9. Two closely spaced asperities squeezed against a
flat wall with a forceF. In ~a! we have neglected the lateral~elastic!
coupling between the asperities, and within this approximation
hard wall make contact with both the asperities,F11F25F. In ~b!
we have taken into account the lateral elastic coupling between
asperities. The force acting on the higher asperity results in a do
ward displacement of the lower asperity, so that no direct con
occurs between the lower asperity and the hard wall even when
total squeezing forceF is the same as in~a!.
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APPENDIX A: AREA OF CONTACT WITH A SMOOTH
LONG-DISTANCE CUTOFF

Let us assume thatC(q) is given by

C~q!5C0 for q,q0

C~q!5C0S q

q0
D 22(H11)

for q.q0

Substituting this into Eq.~2! gives

G5bC0q0
4H 1

4 F12S qL

q0
D 4G1

1

2~12H ! F S q

q0
D 2(12H)

21G J ,

~A1!

where

b5
p

4 F E

~12n2!s0
G2

.

Thus, if q0@qL ~i.e., l0!L), the dependence ofG on L is
negligible.

APPENDIX B: BOUNDARY CONDITION FOR sÄ0

We now prove that in the absence of adhesion,P(s,z)
→0 ass→0. Thus we are interested inP(s,z) for smalls,
which correspond to the contact regions close to the detac
areas. We have

P~s,z!5
1

A0
E d2xd@s2s1~x!#

5
1

A0
(

i
E

Ai

d2xd@s2s1~x!#,

where the sum is over all the asperity contact regionsAi ~the
contact will, in general, not consist of one single connec
y
l.

d

on

18410
ed

d

region but rather of many disconnected ‘‘island’’ regions!.
Now consider an arbitrary contact regionAi , see Fig. 10. In
the absence of adhesion it can be shown that the local
pendicular stress vanishes ass1(x);j1/2 as j→0, wherej
is the distance from the pointx to the boundary line of the
contact areaAi ; see Fig. 10.~This is in contrast to the cas
when adhesion is included, where the stress instead div
asj21/2 asj→0.! Let us introduce a curve-linear coordina
system (j,h), where the coordinate linesh are orthogonal to
the coordinate linesj; see Fig. 10. Thus, for smallj, we
haves1(x)'g(h)j1/2, so that

E
Ai

d2xd@s2s1~x!#5E
Ai

djdhJ~j,h!d@s2g~h!j1/2#

'E dh
2J~0,h!

g2~h!
s, ~B1!

ass→0. In Eq. ~B1!, J(j,h) is the Jacobian of the coordi
nate transformation (x,y)→(j,h). Thus P(s,z) vanishes
linearly with s as s→0. Note that this result is consisten
with the known results for Hertzian contact between a
surface and a ball or a cylinder, whereP(s,z);s for s
!sH @see Eqs.~9! and ~12!#.

FIG. 10. Curve-linear coordinate system (j,h) in the contact
areaAi . j50 correspond to the boundary line of the contact regi
,

un.
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