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Elastic contact between randomly rough surfaces: Comparison of theory with numerical results
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One of us recently developed a theory of contact mechanics for randomly rough s{iEa¢sks Persson, J.
Chem. Phys115 3840(2001)]. In this paper we compare the results of the analytical model (eixtach
numerical results. We also present some analytical results related to the theory.
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I. INTRODUCTION Here A(L)=A, denotes the macroscopic contact arkais
the diameter of the macroscopic contact area, so Apat
Even a highly polished surface has surface roughness orrL?]. _ ) _ _

many different length scales. When two bodies with nomi- We briefly review earlier work on contact mechanics. The
nally flat surfaces are brought into contact, the area of redp@Per by Hertzgave the solution for the frictionless normal
contact will usually only be a small fraction of the nominal contact of two elastic bodies of quadratic profile. He found
contact area. We can visualize the contact regions as smdljat the area of real contact varies nonlinearly with the load
areas where asperities from one solid are squeezed agaif Saueezing force~F?. In 1957 Archard applied the

asperities of the other solid; depending on the conditions th&1€MZ solution to the contact between rough surfaces, and
asperities may deform elastically or plastically. showed that for a simple fractal-like model, where small

How large is the area ofeal contact between a solid spherical bumpgor asperities were distributed on top of

block and the substrate? This fundamental question has e}@r9er spherical bumps and so on, the area of real contact
tremely important practical implications. For example, it de-Varies nearly linearly with Fy. A similar conclusion was
termines the contact resistivity and the heat transfer betwedffached in Refs. 68, whose authors again assumed asperi-
the solids. It is also of direct importance for sliding frictibn, t€S with spherical summitdof identical radius with a

e.g., the rubber friction between a tire and a road surface, angaussian distribution of heights. A more general contact me-

. 9,10
it has a major influence on the adhesive force between twghanics theory was developed by Bushal."™ They ap-
solids blocks in direct contact. proximated the summits by paraboloids and applied the clas-

One of us recently developed a theory of contactSic@l Hertzian solution for their deformation. The height
mechanicg, valid for randomly roughe.g., self-affine frac- distribution was described by a random process, and they

tal) surfaces In the context of rubber friction, which moti- found that
vated this theory, mainly elastic deformation occurs. How-
ever, the theory can also be applied when both elastic anc
plastic deformations occur in the contact areas. This case is
of course, relevant to almost all materials other than rubber.

In this paper we present results related to the théary
also numerical results, obtained by discretizing the basic
equations of elasticity, to test the accuracy of the theory. We
find that the theory is in good agreement with the numerical
calculations. The analytical model, in addition to providing
deeper insight into the nature of the area of contact, can, with
only a small computational effort, be applied to surfaces with
arbitrary surface roughness. As shown elsewfR¢he, theory e
can also be applied to viscoelastic solids, and enters as als:sashis @5 0 o
important ingredient in a theory of sliding friction recently
developed for viscoelastic materials, e.g., rubber.

The basic idea behind the contact theory is that it is very
important not toa priori exclude any roughness length scale
from the analysis. Thus iA(\) is the (apparent area of
contact on the length scale [more accurately, welefine FIG. 1. A rubber ball squeezed against a hard, rough, substrate.
A(MN) to be the area of real contact if the surface would be eft: the system at two different magnifications. Right: The area of
smooth on all length scales shorter thensee Fig. 1, then  contactA(\) on the length scala is defined as the area of real
we study the functiorP({) =A(N)/A(L) which is the rela-  contact when the surface roughness on shorter length scalex than
tive fraction of the rubber surface area where contact occursas been removefie., the surface has been “smoothed” on length
on the length scale=L/{ (where {=1), with P(1)=1. scales shorter than).

P(Q) = A/A(L)
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at low squeezing force the area of real contact increases lin- %
early withFy, . The theory described below will be compared P({)= f doP(0,{).
to the results of Busket al. in Sec. IV. 0
It is straightforward to solve Ed1) with the boundary con-
Il. THEORY ditions P(0,{) =0 andP(,{)=0 to obtain

We briefly review the theory presented in Ref. 2. From 2 (* sinx 5
contact mechanicésee, e.g., Ref.)8it is known that in the P(0)= ;fo dx— —exd —x°G({)]. )
frictionless contact of elastic solids with rough surfaces, the
contact stresses depend only upon the shape of the gap be-We now consider the limiy<E, which is satisfied in
tween them before loading. Thus, without loss of generalitymost applications. In this case, for mdsvalues of interest,
the actual system may then be replaced by a flat elastic sug(¢)>1, so that onlyx<1 will contribute to the integral in
face[elastic modulusE and Poisson ratio, related to the Eq. (3), and we can approximate sirx and
original  quantities via (+v?)/E=(1— vi)/E1+(1 )

2 . . .. . 0
—v5)/E,] in contact with a rigid body having a surface _“ 2 _ 12
roughness profile, which result in the same undeformed gap P()~ wfo dxexf —x*G()]=[7C(H]" ™ @)
between the surfaces. L , L ,

Consider a system at the length scaleL/¢, whereL is ~ 1huS, Within this approximation, using Eq) and (4) we
of order the diameter of the nominal contact area. We defin@Pt@in P(£)= oo, so that the area of real contact is propor-

: tional to the load.
g, =2w/L, and writeq=q, ¢. Let P(o,{) denote the stress , ) , )
distribution in the contact areas under the magnificaon 1€ theory above is valid for surfaces with arbitrary ran-

The functionP(c,¢) satisfies the differential equatiisee dom roughness, but will now be applied to self-affine fractal

Ref. 2 surfaces. It has been found that many “natural” surfaces,
e.g., surfaces of many materials generated by fracture, can be

P 2P approximately described as self-affine surfaces over a rather

&—§=G’(§)USF, (1) wide roughness size region. A self-affine fractal surface has

7 the property that if we make a scale change that is different

whereG'(¢) denotes the derivative of the function for each direction, then the surface does not change its

morphology!! Recent studies have shown that even asphalt

iy E 2 req road tracks(of interest for rubber friction are (approxi-
G(O=7] 1= oq J dqq’C(q). (2)  mately self-affine fractal, with an upper cutoff lengtk,
ol S =21r/q, of the order of a few mm? For a self-affine fractal
The surface roughness power spectra surfaceC(q)=C, for q<qq, while for g>qq,
1 —2(H+1)
_ 2 —iq-x C(g)=C (— , 5
C(q) (277)2J d?x(h(x)h(0))e 14, (@)=Co % 5

where H=3—D; (where the fractal dimension<2D;<3),

and whereq, is the lower cutoff wave vector, an@, is

determined by the rms roughness amplitud€)=h3/2 via

Co=a(hy/qo)?H/2m where a=1[1+H—(q,/qo)?H].

Note that forq, /qp<1, a~1/(1+H) is independent of.
P(c,1)=Py(0). Substituting Eq.(5) into Eg. (2), definingq=q, ¢ and

assumingg>(q, gives(also see Appendix A
If we assume a constant pressure in the nominal contact area,
thenPy(0) = 8(a— o). Goho |2 aH [E\? q|*0~"
Equation(1) is a diffusion-type equation, where time is GO~ 4(1—v%) (1—H)\a_0 %
replaced by the magnificatiofi and the spatial coordinate

wherez=h(x) is the height of the surface above a flat ref-
erence planéchosen so thath)=0), and(- - -) stands for
an ensemble average.

Let us write

by the streser (and where the “diffusion constant” depends SO that

on {). Hence, when we study(o,{) on shorter and shorter A(1—12) [1-H\Lgy [ q |2
length scaleqcorresponding to increasing), the P(o,{) P({)~ ( _0(_) ]
function will become broader and broader dnspace. We Qoho | 7aH E 1do

can take into account that detachment will actually occurgyt o-,=F/A,, so that thdapparentarea of contact on the
when the local stress reaches:0 (we assume no adhesion |ength scalex = 27/q becomes

via the boundary conditiotsee Appendix B

AN AP(£) 4(1-v?)[1-H| 2Ry [ A\ s

P(0,0)=0. (N)=Ag (§)—W 7al| E\xg . (6
We assume that only elastic deformation ocdiues, the  If N\, denotes the low-distance cutoff in the self-affine fractal
yield stressoy— ). In this case distribution (which cannot be smaller than an atomic dimen-
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FIG. 2. The normal stress distribution in the contact area be- FIG. 3. The normal stress distribution in the contact area be-
tween a rectangular block and a nominally flat substrate. kdgre tween a ball and a nominally flat substrate. The pressure is shown
=0y is the maximum stress in the contact area wifenl. The  for G=0, 0.6, and 2. Théapparentcontact area in the three cases
pressure is shown fa@=0, 0.6, and 2. Théapparentcontact area s A, 0.624,, and 0.38\.
in the three different cases &, 0.64A,, and 0.38\,.

) Z 2 (ov (nma'\  [nmo
sion), then Eq.(6) shows that therea of real contact A\ ;) P(o,0)= 2 — | do’ Po(cr’)sm( )sm( )
is proportional to the load. We note that if the surface is n=109yJo Ty Ty
self-affine fractal the whole way up to the lateral dizef the na\ 2
nominal contact area, thep=27/L and Eq.(6) predict that Xexp{— 0—) o5G(0) . (7)
Y

A(\) is proportional toL.

Let us first consider a circular Hertzian contact as arises, e.g.,

Il NUMERICAL RESULTS AND COMPARISON WITH if a spherical elastic body is squeezed against a nominally
OTHER CALCULATIONS

1/2

: ®

flat substrate. We have

. . . . . . 2
In this section we consider the stress distribution at the 1 r

interface, assuming that only elastic deformation occurs. As- My

sume first that a rectangular block with a nominally flat sur- . .
g y vhereL =2r is the diameter of the contact area ang the

face is squeezed against a nominally flat substrate. We nddner ; Th q
glect edge effects and assume the initial stress distribution MXimum (macroscopik contact pressure. The correspond-
ing stress probability distribution function is

o(X)=oy

P(O-al):é(o-_o-o)! 20
2

1
P(o1)=— [ dxalo—o(x)]- ©
. o . r
whereaoy is the average stress. The stress distribution for this TH 7H
case was calculated in Ref. 2, for o<oy, and zero otherwise. Note that the average pres-
sureogy=20y/3. TheG=0 curve in Fig. 3 shows this stress

distribution. Substituting Eq.9) into Eq. (7) gives

- [nmoy nmo
P(o,0)= Z —sin sin -
n=1 0y oy oy 5 2 [nmo nw\? ,
o 2 P(cr,g)—nle—Yanm O'_Y exp — O'_Y O'OG(g) )
Xex;{—<g—) 73G(0)|, (10
where
where the elastic limit corresponds &g, — (in numerical _
calculations one can keeapy finite but large. In Fig. 2 we [ SNy, COSy,
show the stress distribution fa&8=0, 0.6, and 2. In the n I o
n

figure oy denotes the maximum stress in the macroscopic
contact area, which in the present case equals the averagad wherey,=nwo/oy. The resulting stress distribution

stresso since the stress faf=1 is constant. is shown in Fig. 3 for G=0, 0.6, and 2.

Since the equation of motion fé( o, ) is linear, we can Finally, let us consider a cylinder squeezed against a
obtain the stress distribution for any othé(o,1)=Py(0o) nominally flat substrate. In this case the macroscopic pres-
via sure in the nominal contact region is of the Hertz form
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FIG. 4. The normal stress distribution in the contact area be-
tween a cylinder and a nominally flat substrate. The pressure ils)in
shown forG=0, 0.6, and 2. Thdapparent contact area in the
three different cases &y, 0.61A,, and 0.3A,.

==

whereL =2ay, is the width of the contact area and; the  the curve forq>q,, whereqo~2x10°‘m~*, we obtain—2
maximum (macroscopiE contact pressure. The correspond- — —2H—1 so that the roughness exponéit0.5 and the
ing stress probability distribution is fractal dimensiorD;=3—H~2.5.

Figure 6 shows the stress distribution as obtained from
numerical calculations. IA, denotes the nominal contact
area, then the area of contact at magnificationsl00 and
(12 400 becomes=0.62A, and 0.33\,. Note that the stress dis-

for o< cy,, and zero otherwise. Note that the average preStributions in Fig. 6 are similar to those in Fig. 4, and we can
Ho s . theref h Icul @as 0.61A
sureoy= moyl4. TheG=0 curve in Fig. 4 shows this stress therefore compare the calculated contact ar 0.618,,

S 9 o . . and 0.3A,) with those obtained in the numerical study(,
distribution. Substituting Eq.12) into Eq. (7) givesP(o,{) 0 : : :
of the form of Eq.(10), with 0.62A,, and 0.33\;) which are in relative good agreement.

In the numerical calculations by Buchet al, the width
1 of the Hertzian contact area was=2ay~1 cm, and the
B”:J’ dx x(1—x%)"Y2sin( y,x) maximum Hertzian pressum, =542 MPa, giving an aver-
0 age pressurerp~426 MPa. Using Eq(6) with the elastic
wherey,=nmay /oy . Figure 4 shows the stress distribution modulusE=1x 10" Pa, »=0.3, andh,=0.95 um, at the
for G=0, 0.6, and 2. magnification{ =400 (corresponding ta.=0.0025 cm) we
Bucheret al. studied the contact between a rail and wheelobtain the area of real contaet0.2A,, which is relative
using a numerical method which is essentially exact wherelose to the value obtained in the numerical study.
the grid size is made small enoutjiiThe wheel is treated as ~ As a second example of contact between randomly rough
a cylinder, and the rail as a nominally flat substrate occupysurfaces, consider the results of Borri-Brunegtal.** Using
ing thexy plane. The two surfaces are randomly rough, anddn essential exact numerical method, they studied how the
the contact is assumed to be purely elastic. To simplify théarea of contact depend on the magnification when a solid
calculations, the asperities are assumed to have a constasith a rough surfacéself-affine fractal with the fractal di-
height in they direction, so that the deformation field is mensionD;=2.3) is squeezed against a flat substrate.
two-dimensionalthe xz plang. The one-dimensiongllD)- Figure 7 shows the area of contaét,as a function of the

power spectr&(q) is shown in Fig. 5, wherg is measured applied load~\ (from Ref. 19. Results are presented for five
in units of (um) . andC in units of (wm)®: different magnificationd./\. Note that within the accuracy

of the calculationsA~Fy . Also note that the slope of the
o 1 _ curves decreases with increasing magnification; if (eudi-
C(q)= EJ dx{(h(x)h(0))ye™'%. trarily) denote the slope for the magnificatib/\ = 256 with
unity, then the slopes fdc/A =128, 64, 32, and 16 will be
For a self-affine fractal surface, the 1D power spectra scale.24, 1.57, 1.93, and 2.32. This is in accordance with the
as~q 2"~ for g>qq [for the 2D power spectra the scaling theory presented aboysee Eq(6)], where the area of con-
is instead~q 2" ?; see Eq(5)]. From the slope£ —2) of  tact on the length scalex is proportional to A(\)

FIG. 5. The 1D roughness power spec@éq) (for the com-
ed wheel-rail systejrnas a function of the wave vectgrof the
surface roughness. Far>qo, Where qo~2x10'm, the power
spectraC~q~ 2, corresponding to a self-affine fractal surface with
12 the fractal dimensio~2.5. q is measured in units ofym)~*

o(X)=oy , (11 andC in units of (um)3. Adapted from Ref. 13.

—1/2

1 f(ay o o \?
P(Uyl):EJla dxd[o—o(X)]= [1—(—)

(Ta OH
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A=0.01cm FIG. 7. The area of contach, as a function of the applied load

Fn. Results are presented for five different magnificatibns.
The fractal dimension i®;=2.3. Adapted from Ref. 14.

slopes forD;=2.3 and 2.1 will be 2.0 and 3.1. Using the
expression foiG derived in Appendix Bwith g, =qq, since
the generated surfaces where self-affine fractal right up to the
£ = 400 lateral size of the nominal contact ayame obtain the theo-

- retical slopes 1.8 and 3.0, again in good agreement with the
1 A=0.0025 cm numerical results. Finally, we note that if the surfaces are
self-affine fractal the whole way up to the lateral dizef the
nominal contact area, thep=2#/L and Eq.(6) predict that
A(MN) (at a fixed magnificationis proportional toL. This is
also in excellent agreement with our numerical studfes.

UIGH
IV. DISCUSSION

FIG. 6. The normal stress distribution in the contact area be- The present theory predicts that the area of contact in-
tween a cylinder and a fldmodel of rail-wheel contact problém e 5565 |inearly with the load for small load. In the standard

disribution has been calcuited rumericaly with 4999 grd poni 2 Of Greenwood and Wiliamsbhis result holds only
(see Ref. 1B The (apparent contact area in the three different approximately and comparison of the prediction of their

cases ihy, 0.62,, and 0.33,. theogy with the present theory is therefore difficult. Bush
et al” developed a more general and accurate contact theory,

where the summits are approximated by paraboloids to

~(L)'H. SinceD¢=2.3 we have +H=D¢—2=0.3, so  which they apply the Hertzian contact theory. They found

that the theoretical slopes are 1.23, 1.52, 1.87, and 2.30, ithat at small load the area of contact depends linearly on the

excellent agreement with the numerical results. Let us als@ad according to

compare the numerical value of the slope for magnification

L/\ =256 with the theoretical predictiditq. (6)]. Since the A S Fn[ [ —12

surfaces are self-affine fractal the whole way up to the linear A_Oz(l_ v )E< fo dqq30(q)) :

size of the contact area, we will takp=27/L in Eq. (6).

We note that this expression fog is somewhat uncertain, This result is very similar to the prediction of the present

sincel is the width of the square nominal contact area usedheory where, for a small load, from Eq®) and (4),

in the computer simulations, whilg, in the theory is a radial

long-distance cutoff wave vector. Using the known elastic A 2 > PN [ -2

modulus(and Poisson ratjp the linear size of the contact A_o: ;(1_” )E fo dqq3C(q)) :

area, and the rms roughness amplitude, we obtain the theo-

retical slope 6<10 N1, to be compared to the slope in Thus our contact area is a factor ofr26maller than pre-

Fig. 7: 8x10 10N~ 1, dicted by the theory of Buslet al. The theories of both
Borri-Brunettoet al. also studied the dependencef/obn  Greenwood and Williamson and Bugt al, assumed that
the load(or normal forcg Fy at a fixed magnificatio./N  the asperity contact regions are independent. However, as we

=128, for surfaces with three different fractal dimensions,show below, for real surface@vhich always have surface
namely,D;=2.1, 2.3, and 2.5. They again observed a linearoughnesses on many different length scaths will never
relation betweerA and Fy but with different slopes: if we be the case even at very low nominal contact pressures. We
(arbitrarily) denote the slope fdD;= 2.5 with unity, then the now argue that this may be the origin of ther2difference
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FIG. 9. Two closely spaced asperities squeezed against a hard
flat wall with a forceF. In (a) we have neglected the latefalastio
coupling between the asperities, and within this approximation the
hard wall make contact with both the asperitiEg;F,=F. In (b)
we have taken into account the lateral elastic coupling between the
asperities. The force acting on the higher asperity results in a down-
ward displacement of the lower asperity, so that no direct contact

FIG. 8. The contact between two elastic solids. At a low nomi-ccurs between the lower asperity and the hard wall even when the
nal squeezing pressure, at the longest length sgatelow concen-  total squeezing forc€ is the same as ife).
tration of contact regions occurs, and the latéedhstio coupling
between these macrocontact areas can be neglectedaVémge A:a(Ff’3+ F%’g’),

pressure in such a macrocontact area is independent of the applieqh he f . h .
pressure. The asperity contact regions within each macrocontalyN€reF1 andF; are the forces acting on the two asperities,

area will, on a short enough length scale, be so closely spaced thaf'd Wherea depends on the elastic modulus and the radius of
the lateral (elastio interaction between these microasperiyr ~ curvature of the asperities. Let us now calculate the area of

nanoasperitycontact regions must be taken into account. contact when the lateral interaction between the asperities is
included. First note that, if we apply a forée=F,+F, to

between our theorgwhich assumes roughness on many dif-the higher asperity, this will not only compress this asperity

ferent length scalgsand the result of Buskt al. but will also lower the other asperity as a result of the elastic
Consider the contact between two solids at a very lowdeformation of the solid. We now assume that the resulting

nominal contact pressure. Consider first the system on thdisplacement of the lower asperity is so large that no contact

longest length scal&,. On this length scale the solids will occur with the rigid plang¢see Fig. %)]. Thus in this case

make contact at a low concentration @fidely separated the contact area is

contact areas; see Fig. 8. Since the separation between these ) o3 o3

macracontact areas is very large, we can neglect the interac- A'=aF=a(F+Fy) <A

tion between the macrocontact areas; in this case thep s including the lateral interaction between the asperities
Greenwood-Williamson theoryand any other of the stan- i reduce the area of real contact. This effect is completely

dard contact theoriggredicts that the local contact Pressure general, and not limited to the simple case studied above.
will be of order~Eqyhg. Thus the(average pressure in the

contact regions on the longest length scalmdependenof
the nominal contact pressueg=F\/A,. Now each macro-
contact area is covered by smaller asperities, and the smaller We have studied the contact stress distributi®(v, ()
asperities by even smaller asperities, and so on. It is easy #nd shown thaP(o,{)~ o aso—0. The results foP(o,{)

see that at a short enough length scale the small-asperitf the analytical model has been compared wékac) nu-
contact regions will be very closely separated, and it is theremerical results for the contact between a cylinder and a
fore impossible to neglect the interaction between the asperhominal flat substrate with surface roughness on many dif-
ties at short enough length scales. We now show that includerent length scales. The theory is in good agreement with
ing the interaction between the small-sized asperities wilthe numerical results. The theory predicts that the area of
tend to decrease the contact area in accordance with the reentact in most cases varies linearly with the load, and that it
sult of our theory. depends on the magnificatiei\ asA(\)~ (/L) ~": both

Consider two closely spaced asperities with sphericapredictions are in excellent agreement wigxack numerical
cups with identical radii of curvature but with different results.

heights, as illustrated in Fig. 9. Assume that a flat rigid sur-

face is squeezeq against the rough sg(face. Let us first ne- ACKNOWLEDGMENTS

glect the interaction between the asperities. If the flat surface

makes contact with both asperitigsee Fig. @a)], then ac- B.P. was supported by a research and development grant
cording to Hertz contact theory the area of real contact igrom Pirelli Pneumatici, and by a grant from BMBF related
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V. SUMMARY AND CONCLUSION
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cal Strategies from the Nano-to Meso-Scales.”

APPENDIX A: AREA OF CONTACT WITH A SMOOTH
LONG-DISTANCE CUTOFF

Let us assume thak(q) is given by
C(q)=Co for q<dgo
)—2(H+1)

C(Q):Co(%

Substituting this into Eq(2) gives
1 aL 4 1 q 2(1-H)
oope (3| el 2"
P °q°(4 a/ | 2@ la

where

for gq>qq

FIG. 10. Curve-linear coordinate syster§, ) in the contact
“ , areaA, . £=0 correspond to the boundary line of the contact region.

(A1) region but rather of many disconnected “island” regipns
Now consider an arbitrary contact regign, see Fig. 10. In
the absence of adhesion it can be shown that the local per-

- E 2 pendicular stress vanishes ag(x) ~ £¥2 as é—0, where¢
B= Z[m is the distance from the point to the boundary line of the
0

contact ared; ; see Fig. 10(This is in contrast to the case
Thus, if go>q, (i.e., \g<L), the dependence & onL is  when adhesion is included, where the stress instead diverge

negligible. as¢é Y2 asé—0.) Let us introduce a curve-linear coordinate
system €, ), where the coordinate lines are orthogonal to
APPENDIX B: BOUNDARY CONDITION FOR o=0 the coordinate lineg; see Fig. 10. Thus, for small, we

haveo;(x)~ 1250 that
We now prove that in the absence of adhesiBtg,?) 71(0=0(n)¢

—0 aso—0. Thus we are interested ®(o,¢) for small o,
which correspond to the contact regions close to the detached fAidzxa["_ o1(x)]= J'Aidgd (& mdlo—g(m e
areas. We have
f q 2J(0,7)
T () 7
aso—0. In Eq.(B1), J(&,7) is the Jacobian of the coordi-
1 ) nate transformationx(y)—(&,7). Thus P(o,{) vanishes
Ao Z fA.d xdlo—oy(X)], linearly with o as o—0. Note that this result is consistent
' with the known results for Hertzian contact between a flat
where the sum is over all the asperity contact regibnghe  surface and a ball or a cylinder, wheR{o,{)~0o for o
contact will, in general, not consist of one single connected< o [see Egs(9) and(12)].

1, (B1)
P(0,§)=A—O dxé[o—o01(X)]
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