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Abstract

We study the time dependence of the (average) interfacial separation between an elastic solid

with a flat surface and a rigid solid with a randomly rough surface, squeezed together in a

fluid. We use an analytical theory describing the fluid flow factors, based on the Persson

contact mechanics theory and the Bruggeman effective medium theory, to calculate the

removal of the fluid from the contacting interface of the two solids. In order to test this

approach, we have performed simple squeeze-out experiments. The experimental results are

compared to the theoretical predictions.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Contact mechanics between solid surfaces is the basis

for understanding many tribology processes [1–7] such as

friction, adhesion, wear and sealing. The two most important

properties in contact mechanics are the area of real contact

and the interfacial separation between the solid surfaces.

For non-adhesive contact and small squeezing pressure, the

average interfacial separation depends logarithmically [8–10],

and the (projected) contact area linearly, on the squeezing

pressure [11]. Here we study how the (average) interfacial

separation depends on time when an elastic solid with a flat

surface is squeezed against a rigid solid with randomly rough

surface in a fluid [12].

The influence of surface roughness on fluid flow at the

interface between solids in stationary or sliding contact is

a topic of great importance both in Nature and technology.

Technological applications include leakage of seals, mixed

lubrication and removal of water from the tire–road footprint.

In Nature fluid removal (squeeze-out) is important for

adhesion and grip between the adhesive toe pads of a tree frog

or a gecko and the countersurface during rain, as well as for

cell adhesion.
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Almost all surfaces in Nature and most surfaces of

interest in tribology have roughness on many different length

scales, sometimes extending from atomic distances (∼1 nm)

to the macroscopic size of the system which could be of the

order of ∼1 cm. Often the roughness is fractal-like so that

when a small region is magnified (in general with different

magnification in the parallel and orthogonal directions) it

‘looks the same’ as the unmagnified surface.
Most objects produced in engineering have some

particular macroscopic shape characterized by a radius of

curvature (which may vary over the surface of the solid),

e.g. the radius R of a cylinder in an engine. In this case

the surface may appear perfectly smooth to the naked eye

but at short enough length scale, in general much smaller

than R, the surface will exhibit strong irregularities (surface

roughness). The surface roughness power spectrum C(q)

of such a surface exhibits a roll-off wavelength λ0 ≪ R

(related to the roll-off wavevector q0 = 2π/λ0) and therefore

it appears smooth (except for the macroscopic curvature R)

on length scales much longer than λ0. In this case, when

studying the fluid flow between two macroscopic solids, one

may replace the microscopic equations of fluid dynamics with

effective equations describing the average fluid flow on length

scales much larger than λ0 and which can be used to study,

for example, the lubrication of the cylinder in an engine. This

approach of eliminating or integrating out short length scale
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degrees of freedom to obtain effective equations of motion,

describing the long distance (or slow) behavior, is a very

general and powerful concept often used in physics.

In the context of fluid flow at the interface between

closely spaced solids with surface roughness, Patir and

Cheng [13, 14] have shown how the Navier–Stokes equations

of fluid dynamics can be reduced to effective equations of

motion involving locally averaged fluid pressures and flow

velocities. In the effective equations occur so-called flow

factors, which are functions of the locally averaged interfacial

surface separation. They showed how the flow factors can

be determined by solving numerically the fluid flow in small

rectangular units with linear sizes of the order of (or larger

than) the roll-off wavelength λ0 introduced above. In [15] one

of us has developed an analytical theory for the pressure flow

factors based on the Persson contact mechanics model and the

Bruggeman effective medium theory to take into account the

topography disorder resulting from the random roughness. We

will use this theory in the calculations presented below.

This paper is organized as follows: in section 2 we briefly

review the basic equations of fluid dynamics and describe

some simplifications which are valid for the present case;

in section 3 we describe the experimental method we have

used to study the interfacial separation; and in section 4 we

compare the experimental results to the theory prediction. The

summary and conclusions are presented in section 5.

2. Theory

2.1. Fluid flow between solids with random surface
roughness

Consider two elastic solids with randomly rough surfaces.

Even if the solids are squeezed in contact, because of the

surface roughness there will, in general, be non-contact

regions at the interface and, if the squeezing force is not too

large, there will exist non-contact channels from one side to

the other side of the nominal contact region. We consider now

fluid flow at the interface between the solids. We assume that

the fluid is Newtonian and that the fluid velocity field v(x, t)

satisfies the Navier–Stokes equation:

∂v

∂t
+ v ·∇v = −

1

ρ
∇p + ν∇2v

where ν = η/ρ is the kinetic viscosity and ρ is the mass

density. For simplicity we will also assume an incompressible

fluid so that

∇ · v = 0.

We assume that the nonlinear term v·∇v can be neglected

(which corresponds to small inertia and a small Reynolds

number), which is usually the case in fluid flow between

narrowly spaced solid walls. For simplicity we assume the

lower solid to be rigid with a rough surface, while the upper

solid is elastic with a flat surface. A coordinate system xyz

with the xy plane in the surface of the lower solid and the z

axis pointing toward the upper solid is introduced, see figure 1.

The upper solid moves with the velocity v0 parallel to the

Figure 1. An elastic solid (block) with a smooth surface in contact
with a rigid solid (substrate) with a rough surface in a fluid.

lower solid. Let u(x, y, t) be the separation between the solid

walls and assume that the slope |∇u| ≪ 1. We also assume

that u/L ≪ 1, where L is the linear size of the nominal

contact region. In this case one expects the fluid velocity to

vary slowly with the coordinates x and y as compared to the

variation in the orthogonal direction z. Assuming a slow time

dependence, the Navier–Stokes equations reduces to

η
∂2v

∂z2
≈ ∇p.

Here and in what follows v = (vx, vy), x = (x, y) and ∇ =

(∂x, ∂y) are two-dimensional vectors. Note that vz ≈ 0 and that

p(x) is independent of z to a good approximation. The solution

to the equations above can be written as

v ≈
1

2η
(z − u0(x))(z − u1(x))∇p +

z − u0(x)

u1(x) − u0(x)
v0 (1)

so that v = 0 on the solid wall z = u0(x) and v = v0 for

z = u1(x). Integrating over z (from z = u0(x) to u1(x)) gives

the fluid flow vector

J = −
u3(x)

12η
∇p +

1

2
u(x)v0 (2)

where u(x) = u1(x) − u0(x) is the interfacial separation at x.

Mass conservation demands that

∂u(x, t)

∂t
+ ∇ · J = 0 (3)

where the interfacial separation u(x, t) is the volume of fluid

per unit area. In this last equation we have allowed for a slow

time dependence of u(x, t) as would be the case, for example,

during fluid squeeze-out from the interfacial region between

two solids.

2.2. Viscosity of confined fluids

It is well known that the viscosity of fluids at high pressures

may be many orders of magnitude larger than at low pressures.

Using the theory of activated processes, and assuming that

a local molecular rearrangement in a fluid results in a local

volume expansion, one expects an exponential dependence

on the hydrostatic pressure η = η0 exp(p/p0), where typically

(for hydrocarbons or polymer fluids) p0 ≈ 108 Pa (see, e.g., [5,

16]). Here we are interested in (wetting) fluids confined

between the surfaces of elastically soft solids, e.g. rubber or
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gelatin. In this case the pressure at the interface is usually at

most of the order of the Young’s modulus, which (for rubber)

is less than 107 Pa. Thus, in most cases involving elastically

soft materials, the viscosity can be considered as independent

of the local pressure. In the applications below the nominal

pressure is only of the order of ∼104 Pa and the pressure

in the area of real contact of the order of ∼106 Pa, so that

the dependence of the (shear) viscosity on the pressure can be

neglected.

It has been observed experimentally [17, 18], and also

found in molecular dynamics (MD) simulations [19, 20], that

the effective viscosity η (defined by σ = ηv/u, where σ is

the shear stress, u the separation between the surfaces and v

the relative velocity) of very thin (nanometer thickness) fluid

films confined between solid walls at low pressure may be

strongly enhanced and to exhibit non-Newtonian properties.

In addition, for nanometer wall–wall separations, a finite

normal stress is necessary for the squeeze-out, i.e. the ‘fluid’

now behaves as a soft solid and the squeeze-out occurs in a

quantized way by removing one monolayer after another with

increasing normal stress [21]. In the application below we

only study the (average) separation between the walls with

micrometer resolution, and in this case the strong increase

in the viscosity for very short wall separations becomes

irrelevant.

2.3. Roughness on many length scales: effective equations of
fluid flow

Equations (2) and (3) describe the fluid flow at the interface

between contacting solids with rough surfaces. The surface

roughness can be eliminated or integrated out using the

renormalization group (RG) procedure. In this procedure one

eliminates or integrates out the surface roughness components

in steps and obtain a set of RG flow equations describing how

the effective fluid equation evolves as more and more of the

surface roughness components are eliminated. One can show

that, after eliminating all the surface roughness components,

the fluid current (given by (2)) takes the form

J = A(ū)∇p̄ + B(ū)v0 (4)

where A and B are 2 × 2 matrices, and where ū(x, t) and

p̄(x, t) are now locally averaged quantities. In general, A and

B depend also on ∇p̄ (see [22]), but for the low pressures (and

pressure gradients) prevailing in the application presented

below, we can neglect this effect.

In the original work of Patir and Cheng it was not proved

that the flow current can be written as in (4), but later work has

derived (4) rigorously using different procedures, including

the RG method [15] and the homogenization procedure

described in [23]. The basic assumption necessary is only the

separation of length scales: the longest wavelength roughness

component should be much smaller than the nominal size

of the contact region. The roughness should be random (i.e.

the phases of the different surface roughness wavevector

component should be uncorrelated), but it does not need to be

self-affine fractal, i.e. the surface roughness power spectrum

C(q) can have any form, e.g. it does not need to be a power in

Figure 2. The fluid pressure flow factor as a function of the average
interfacial separation ū divided by the root-mean-square roughness
amplitude hrms. For the copper surfaces 1 and 2 the green curve
shows the large ū behavior as predicted by Tripp [24].

the wavevector, as would be the case for a self-affine fractal

surface.

If the sliding velocity v0 = 0 and if the surface roughness

has isotropic statistical properties, then A is proportional to the

unit matrix and is usually written as A = −ū3φp(ū)/(12η). In

this case from (3) and (4) we obtain

∂ ū

∂t
− ∇ ·

(

ū3φp(ū)

12η
∇p̄

)

= 0. (5)

In figure 2 we show φp(u) calculated using the Persson contact

mechanics and the Bruggeman effective medium theory [15].

The figure shows the dependence of φp(ū) on the separation

ū for the two (copper) surfaces used in the study below.

The green curve shows the large ū behavior predicted by

Tripp [24]:

φp ≈ 1 −
3

2

〈h2〉

ū2

where 〈h2〉 = h2
rms is the ensemble average of the square of

the roughness amplitude. See also [15] for the calculation of

higher-order corrections.

2.4. Fluid squeeze-out

Let us squeeze a cylindrical rubber block (height d and radius

R) against a substrate in a fluid. Assume that we can neglect

the macroscopic deformations of the rubber block in response

to the (macroscopically) non-uniform fluid pressure. In this

case ū(x, t) will only depend on time t and (5) reduces to

dū

dt
−

ū3φp(ū)

12η
∇2p̄ = 0. (6)

This equation implies that the fluid pressure

p̄ = 2pfluid

(

1 −
r2

R2

)

(7)
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where r = |x| denotes the distance from the cylinder axis, and

where we have assumed that the external pressure vanishes.

pfluid denotes the average fluid pressure in the nominal contact

region. Substituting (7) in (6) gives

dū

dt
≈ −

2ū3φp(ū)pfluid(t)

3ηR2
. (8)

If p0 is the applied pressure acting on the top surface of

the cylinder block, we have

pfluid(t) = p0 − pcont(t), (9)

where pcont is the (locally averaged) asperity contact pressure.

We first assume that the pressure p0 is so small that for all

times ū ≫ hrms and in this case φp(ū) ≈ 1. For ū ≫ hrms we

also have [9]

pcont ≈ βE∗ exp

(

−
ū

u0

)

, (10)

where E∗ = E/(1−ν2) (where E is the Young’s modulus and ν

the Poisson ratio), and where u0 = hrms/α. The parameters α

and β depend on the fractal properties of the rough surface [9].

We note that (10) was derived for the dry condition

and is only approximately valid in the present case. Thus,

we have assumed that the main effect of the fluid pressure

is to reduce the contact pressure pcont = p0 − pfluid.

However, the non-uniform (on the asperity length scale) fluid

pressure will also deform the surface of the elastic solid

non-uniformly, in particular at the length scale determined

by the longest wavelength surface roughness components.

This topic is discussed in [22, 25] (mainly in the context

of mixed lubrication). The elastic deformations induced

by the non-uniform (on the asperity length scale) fluid

pressure will tend to effectively make u(x, t) more uniform

(as if the surfaces were smoother) which will increase the

squeeze-out time and may, in addition to the fluid-induced

macroscopic deformations discussed below (resulting from

the macroscopic variation of the fluid pressure with the

distance r from the center of the contact region), slow

down the squeeze-out. However, because of the low fluid

pressure involved in our experiments (see below), this effect is

negligible. In particular, if Q = (p0/E)(λ/R)(λ/ū) < 1, where

λ is the longest wavelength roughness component, then the

fluid-induced deformations of the solid walls at the asperity

length scale can be neglected [22, 25]. In our case p0/E ≈

0.01, λ/R ≈ 0.1 and λ/ū ≈ 10 so that Q ≈ 0.01.

Using (10) and (9) we get from (8)

dpcont

dt
≈

2ū3(pcont(t))

3ηR2u0
pcont (p0 − pcont) . (11)

For long times pcont ≈ p0 and we can approximate (11) with

dpcont

dt
≈

2ū3(p0)

3ηR2u0
p0(p0 − pcont).

Integrating this equation gives

pcont(t) ≈ p0 − [p0 − pcont(0)] exp

(

−

(

ū(p0)

hrms

)3
t

τ

)

(12)

where

τ =
3ηR2u0

2h3
rmsp0

=
3ηR2

2αh2
rmsp0

. (13)

Using (10) and (12) gives

ū ≈ u∞ +

(

1 −
pcont(0)

p0

)

u0 exp

(

−

(

ū(p0)

hrms

)3
t

τ

)

where u∞ = u0 log(βE∗/p0). Thus, ū(t) will approach the

equilibrium separation u∞ in an exponential way, and we can

define the squeeze-out time as the time to reach, say, 1.01u∞,

which typically will be a few times τ ′ = [hrms/u(p0)]
3τ . In

the experiments performed below η = 100 Pa s, R ≈ 1 cm

and p0 ≈ 104 Pa. Using that u0 ≈ hrms and that for the rough

surfaces used below hrms ≈ 50 µm, and ū(p0) ≈ 1.4hrms we

obtain τ ′ ≈ 1000 s. Thus we expect the squeeze-out to occur

in about 1 h, in good agreement with the experimental data

(see below). For flat surfaces, within continuum mechanics,

the film thickness approaches zero as ū ∼ t−1/2 when t → ∞.

Thus in this case there is no natural or characteristic time

scale, and it is not possible to define a meaningful fluid

squeeze-out time.

At high enough squeezing pressures and after long

enough time, the interfacial separation will be smaller than

hrms, so that the asymptotic relation (10) will no longer hold.

In this case the relation pcont(ū) can be calculated using the

equations given in [1]. Substituting (9) in (8) and measuring

pressure in units of p0, separation in units of hrms and time in

units of τ one obtains

dū

dt
≈ −α−1φp(ū)ū3(1 − pcont), (14)

where α = hrms/u0. This equation, together with the relation

pcont(ū), constitutes two equations for two unknowns (ū and

pcont) which can be easily solved by numerical integration.

2.5. Rubber block under vertical loading

Consider a cylindrical rubber block (radius R, height d)

squeezed between two flat surfaces. If both surfaces are

lubricated (no friction) the (normal) stress at the interfaces

will be constant, p = p0 = FN/πR2, and the change in the

thickness 1d (assuming linear elasticity) will be determined

by p0 = E1d/d. However, if the rubber adheres (or is glued)

to the upper surface with no slip the situation may be very

different [26, 27]. If d > R the stress at the (lower) interface

will again be nearly uniform and 1d will be determined

by p0 = Eeff1d/d, where Eeff > E but nearly identical to

E. In the opposite limit of a very thin rubber disc, d ≪ R,

the pressure distribution at the bottom surface will be nearly

parabolic, p(r) ≈ 2p0[1 − (r/R)2] (see figure 3), and the

effective elasticity Eeff ≫ E. Experiments have shown that,

when a rubber disc is squeezed against a rough surface, even

if the rubber disc is very thin, the (locally averaged) pressure

distribution at the bottom surface of the rubber disc will be

nearly constant [28]. This is because the rubber is pressed into

the ridges of the rough surface and the hydrostatic pressure

becomes smaller. We also note that, while Eeff > E determines

4
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Figure 3. A cylindrical rubber block (height d and radius R)
squeezed against a lubricated substrate (no friction). If d > R the
pressure distribution at the interface will be nearly uniform (left)
while if d ≪ R (right) the pressure distribution will be nearly
parabolic. We have assumed that the upper surfaces of the rubber
cylinders are glued (no slip) to a flat rigid disc.

Figure 4. The non-uniform hydrodynamic pressure is highest at the
center of the contact region and will deform the rubber block as
indicated in the figure.

the change in the thickness of the rubber block, the local

elastic asperity-induced deformations at the (lower) interface

will be determined (to a good approximation) by the Young’s

modulus E.
In section 2.4 we have shown that a flat cylinder surface

squeezed against a flat substrate in a (Newtonian) fluid gives

rise to a parabolic fluid pressure distribution. This implies that,

for a very thin (d ≪ R) elastic disc, glued to a flat rigid surface

and squeezed against another flat surface in a fluid, we expect

the bottom surface of the elastic disc to remain nearly flat,

and the assumption made in section 2.4 will hold to good

accuracy. However, if the rubber block is thick enough (d > R)

the bottom surface of the block will bend inwards as indicated

in figure 4, which will slow down the fluid squeeze-out.
Including the macroscopic deformations of the bottom

surface of the cylinder block, in response to the fluid pressure

distribution p̄(x), is a very complex (numerical) problem,

which we have not been able to solve so far. However, for

the case of a rubber sphere (or a half-sphere) the numerical

problem of accounting both for the fluid-induced macroscopic

deformation, and the asperity interaction, becomes much

simpler and we are at present studying this case numerically,

and we also plan to perform an experiment for this situation

in the near future.

Figure 5. Experimental set-up for studies of fluid squeeze-out
between surfaces of elastic solids.

Figure 6. Squeeze-out experimental set-up (schematic). A
cylindrical glass or rubber block is squeezed against a substrate with
a smooth or rough surface in a fluid. The cylindrical body has the
height d = 1, 0.5 or 0.3 cm, and the diameter D = 2R = 3 cm. The
normal load FN = 13.8 N and the fluid viscosity η = 100 Pa s. The
vertical displacement s(t) of the upper surface is registered as a
function of time t.

3. Experimental details

We have studied the squeeze-out of a fluid between solids

with rough surfaces as shown in figure 5 and in figure 6

schematically. In the experimental set-up a cylindrical silicon

rubber block is squeezed against a rough countersurface in

the presence of a fluid. The rubber block is attached to a dead

weight, resulting in the driving force FN = 13.8 N. This force

is kept constant for all experiments. We have measured the

downwards movement of the dead weight as a function of

time using a digital gauge with a relative position resolution

of 0.5 µm. In order to slow down the whole process, we use

a very high viscosity silicon oil (Dow Corning 200 Fluid,
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Figure 7. The logarithm of the surface roughness power spectrum
as a function of the logarithm of the wavevector for the two copper
surfaces, 1 and 2, with the root-mean-square roughness 42 µm and
88 µm, respectively.

viscosity 100 Pa s) and a relatively low nominal squeezing

pressure (about 104 Pa). In the different configurations we

either squeeze an elastic silicon rubber block, or a rigid

glass block, against smooth (glass) or rough (copper) surfaces

in order to test different aspects of the squeeze-out. The

rubber blocks have the radius R = 1.5 cm and height d = 1,

0.5 and 0.3 cm. We use a silicone elastomer (PDMS) prepared

using a two-component kit (Sylgard 184) purchased from

Dow Corning (Midland, MI). This kit consists of a base

(vinyl-terminated polydimethylsiloxane) and a curing agent

(methylhydrosiloxane–dimethylsiloxane copolymer) with a

suitable catalyst. From these two components we prepared a

mixture 10:1 (base/cross linker) in weight. The mixture was

degassed to remove the trapped air induced by stirring from

the mixing process and then poured into cylindrical casts. The

bottom of these casts was made from glass to obtain smooth

surfaces (negligible roughness). The samples were cured in

an oven at 80 ◦C for over 12 h. The rough copper surfaces

were prepared by pressing sandpaper surfaces against flat

and plastically soft copper surfaces using a hydraulic press.

Using sandpaper with different grit sizes, and repeating the

procedure many times, resulted in (nearly) randomly rough

surfaces suitable for our experiment.

The silicon block was placed in the high viscosity fluid

with some distance to the rough surface. In order to avoid

kinetic (inertia) effects, the initial separation was selected to

be very small. The nominal force was applied by dropping

the dead weight with the rubber block attached to it. The

displacement of the dead weight from its starting position was

measured as a function of time.

The surface topography z = h(x) of the two copper

surfaces 1 and 2 used in our study has been measured using

white-light interferometry. White light is focused on the

substrate and the topography is determined by analyzing the

scattered light and its wavelength. Using this optical method,

the roughness of the soft copper samples can be studied

without destroying the surface. The vertical resolution of the

sensor is 20 nm while the resolution in the xy plane is 2 µm. In

Figure 8. The calculated relative area of contact A/A0 (where A0 is
the nominal contact area) when a glass and a PDMS block is
squeezed against the two copper surfaces 1 and 2 with surface
roughness produced as described in the text.

figure 7 we show the power spectrum C(q) of the two copper

surfaces 1 and 2 defined by [7]

C(q) =
1

(2π)2

∫

d2x 〈h(x)h(0)〉 e−iq·x

where 〈· · ·〉 stands for the ensemble average.

The area of real contact (at the nominal squeezing

pressure ≈ 2 × 104 Pa) as a function of the magnification ζ

is shown in figure 8. Note that the area of real contact (i.e.

the contact area (projected on the xy plane) at the highest

magnification ζ1 or wavevector q1 = q0ζ1) is rather similar in

both cases (equal to A = 0.016A0 and 0.013A0 for surfaces 1

and 2, respectively) in spite of the rather large difference in the

rms roughness values (hrms = 42 and 88 µm, respectively).

This is due to the fact that the rms roughness is dominated

by the longest wavelength roughness components, while

the area of real contact is strongly influenced by the short

wavelength roughness components, which are very similar on

both surfaces (see figure 7 for large wavevector). The small

contact pressure results in a relative large (average) separation

between the surfaces, ū ≈ 1.4hrms, for both surfaces (as

calculated using the theory developed in [9, 10]).

4. Comparison of theory with experiment

In figure 9 we show the surface separation as a function of

the logarithm of time when a glass and a PDMS cylindrical

block are squeezed against a flat glass substrate in a silicon

oil. Also shown is the theoretical prediction (lower curve).

The cylinder is d = 0.5 cm thick and has the diameter D =

2R = 3 cm. As expected, the theoretical result agrees almost

perfectly with the experimental results for the glass cylinder

(no fitting parameters), but for the rubber block the (average)

separation is larger and the squeeze-out slower. We attribute

this to temporarily trapped fluid resulting from the upward

bending (before contact with the substrate) of the bottom

surface of the rubber block, as indicated in figure 4. We define

the ‘trapped’ fluid volume 1V as the fluid volume between the

6
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Figure 9. The surface separation as a function of the logarithm of
time when a glass and a PDMS cylindrical block is squeezed against
a flat glass substrate in a silicon oil. Also shown is the theoretical
prediction (lower curve). The cylindrical body has the height
d = 0.5 cm thick and diameter D = 2R = 3 cm. The normal load
FN = 13.8 N and the fluid viscosity η = 100 Pa s.

bottom surface of the block and a flat (mathematical) surface

in (line) contact with the block close to the edge r = R of

the bottom surface of the block. Using the theory of elasticity

1V = πR2δ with δ = CRp̄/Eeff, where C is a constant of

order unity. For the rubber block with thickness d = 0.5 cm

we get Eeff ≈ E[1+0.5× (R/2d)2] ≈ 4 MPa and δ ≈ 40 µm,

resulting in an increase in the average interfacial separation

(before contact with the substrate) by ∼40 µm, which is

consistent with what we observe.

Figures 10(a) and (b) show the surface separation as a

function of the logarithm of time when PDMS cylindrical

blocks with thicknesses 1 and 0.3 cm are squeezed against

the rough copper surface 1 (root-mean-square roughness

hrms = 42 µm) in a silicon oil. Also shown is the theoretical

prediction for a flat substrate (dashed curve) and for the

copper surface (lower solid curve), assuming that the bottom

surface of the rubber disc is macroscopically flat. Note that the

agreement between the theory and experiment is much better

for the thinner rubber disc. This is indeed expected since the

fluid-pressure-induced curvature of the bottom surface of the

rubber is smaller for the thin rubber disc (see section 2.5).

But even for the thin rubber disc some fluid-pressure-induced

bending of the bottom surface of the rubber disc is expected

and we believe this is the main origin for the slightly slower

squeeze-out observed in the experiment as compared to the

theoretical prediction. The thin solid line, figure 10(b), shows

the calculated squeeze-out when the pressure flow factor

φp(ū) = 1. In the present case the pressure flow factor is

close to unity and this explains the relatively small difference

between using φp = 1 (thin red line) and using the calculated

φp(ū) (from figure 2) (thick red line).

In figure 11 we show the surface separation as a function

of the logarithm of time when the d = 0.5 cm thick PDMS

disc is squeezed against a flat glass substrate (lower curve)

and against the (rough) copper surface 1 (root-mean-square

roughness hrms = 42 µm) in a silicon oil. Note that, before

Figure 10. (a) The surface separation as a function of the logarithm
of time when PDMS cylindrical blocks with thickness 1 cm and
0.33 cm are squeezed against a rough copper surface 1
(root-mean-square roughness hrms = 42 µm) in a silicon oil. Also
shown is the theoretical prediction for a flat substrate (dashed curve)
and for copper surface 1 (lower solid curve). (b) The same as in (a)
but for a more narrow time interval. The thin solid line is the
calculated squeeze-out when the pressure flow factor φp(ū) = 1.

contact with the substrate, the fluid-pressure-induced bending

of the bottom surface of the block is the same in both cases

(giving overlapping curves for t < 300 s).
In figure 12 we show the surface separation as a function

of the logarithm of time when the d = 0.5 cm thick PDMS

cylindrical block is squeezed against the (rough) copper

surface 2 (root-mean-square roughness hrms = 88 µm) in a

silicon oil. Also shown is the theoretical prediction (lower

solid curve). Again, the bending of the bottom surface of the

rubber block results in a slower squeeze-out than predicted

theoretically assuming a (macroscopically) flat bottom surface

of the rubber block.
We are convinced that the discrepancy between our

calculations and the experimental data is due to the

fluid-induced bending of the bottom surface of the block.

As far as we know, this effect has not been studied

experimentally before for the cylinder-block geometry.

However, it is very well known (both from experiments and

from elastohydrodynamic calculations) that, for an elastic

sphere squeezed against a flat in a fluid, the fluid pressure

is highest at the center of the ‘contact area’ and bends the

7
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Figure 11. The surface separation as a function of the logarithm of
time when a 0.5 cm thick PDMS cylindrical block is squeezed
against a flat glass substrate (lower curve) and against the (rough)
copper surface 1 (root-mean-square roughness hrms = 42 µm) in a
silicon oil.

Figure 12. The surface separation as a function of the logarithm of
time when a 0.5 cm thick PDMS cylindrical block is squeezed
against the rough copper surface 2 (root-mean-square roughness
hrms = 88 µm) in a silicon oil. Also shown is the theoretical
prediction (lower solid curve). The dashed curve is the theoretical
prediction for a flat (no surface roughness) substrate.

bottom surface of the sphere inwards so that the solid–solid

separation is largest at the center (where the separation would

be smallest if no deformation of the ball would occur) [5]. For

the cylinder-block case (if the thickness is of the order of or

larger than the diameter of the cylinder) this bending will be

even larger.

5. Summary and conclusion

In this paper we have studied the fluid squeeze-out from the

interface between an elastic block with a flat surface and a

randomly rough surface of a rigid solid. We have calculated

the (average) interfacial separation as a function of time by

considering the fluid flow using a contact mechanics theory in

combination with thin-film hydrodynamics with flow factors

(which are functions of the (local) interfacial separation)

obtained using a recently developed theory. We have shown

the importance of the large length-scale elastic deformations

on the squeeze-out.

The theoretical results have been compared to experi-

mental results. The experiment was performed by squeezing

cylindrical rubber blocks with different heights d against

rough cooper surfaces in the presence of a high viscosity fluid

(silicone oil). Changing the height d of the rubber block, and

also performing additional experiments with flat against flat

surfaces, with combinations of rigid–rigid and elastic–rigid,

we could show the importance of both the large length scale

and asperity-induced elastic deformation on the squeeze-out.

In particular, large length-scale deformations of the bottom

surface of the rubber block resulted in (temporary) trapped

fluid between the elastic solid and the rigid countersurface,

which drastically slowed down the squeeze-out. This effect is

smallest for the thinnest rubber block, in which case we find

good agreement between the theory (where we have neglected

the large length-scale deformations of the rubber block) and

the experiments. Another mechanism which drastically slows

down the squeeze-out occurs at much higher nominal pressure

(or load) than used in the present experiment. This is due to

sealed-off fluid in the nominal contact region during contact

formation. This effect occurs when the area of real contact

approaches ≈ 0.5A0, where the area of real contact percolates,

resulting in sealed-off regions of fluid, which may disappear

only extremely slowly, e.g. by diffusion of the fluid into the

rubber. This effect was discussed in [12] and seems to be

of importance in many applications involving high contact

pressures, e.g. it may result in a static (or start-up) friction

force which slowly increases with time even after very long

times (say, one year).

The squeeze-out of a fluid from the interfacial region

between elastic solids with rough surfaces is very important in

many technical applications (e.g. a tire rolling on a wet road,

wipers and dynamic seals), and the results presented in this

paper contribute to this important subject.
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