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Abstract

The energy dissipation in the contact regions between solids in sliding contact can result in

high local temperatures which may strongly effect friction and wear. This is the case for

rubber sliding on road surfaces at speeds above 1 mm s−1. We derive equations which describe

the frictional heating for solids with arbitrary thermal properties. The theory is applied to

rubber friction on road surfaces and we take into account that the frictional energy is partly

produced inside the rubber due to the internal friction of rubber and in a thin (nanometer)

interfacial layer at the rubber-road contact region. The heat transfer between the rubber and

the road surface is described by a heat transfer coefficient which depends on the sliding speed.

Numerical results are presented and compared to experimental data. We find that frictional

heating results in a kinetic friction force which depends on the orientation of the sliding block,

thus violating one of the two basic Leonardo da Vinci ‘laws’ of friction.

Keywords: contact mechanics, frictional heating, rubber friction
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1. Introduction

When a rectangular block with a nominally smooth surface is

squeezed in contact with a nominally flat substrate, because

of surface roughness the area of real contact is usually only a

very small fraction of the nominal contact area. For hard solids

the contact pressure in the area of real contact will therefore

be very high. During sliding frictional energy dissipation

will take place in the area of real contact and because of

the small volumes involved, at high enough sliding speed

where thermal diffusion becomes unimportant, the local (flash)

temperatures may be very high. As a result local melting of

the material, or other phase transformations, can take place.

In addition tribochemical reactions and emission of photons

or other particles, may occur at or in the vicinity of the contact

regions. All these processes will also affect the friction force,

e.g. if frictional melting occurs the melted film may act as a

lubricant and lower the friction as is the case, e.g. when sliding

on ice or snow at high enough velocity. It is clear that a deep

understanding of the role of frictional heating is of crucial

importance in many cases for understanding friction and wear

processes.

Pioneering theoretical works on the temperature distribu-

tion in sliding contacts have been presented by Jaeger [1],

Archard [2] and others [3–7]. In these studies a moving heat

source is located at the sliding interface. However, some mate-

rials like rubber have internal friction and when such solids are

sliding on a rough surface frictional energy will be dissipated

not just at the sliding interface but also some distance into the

viscoelastic material. The flash temperature effect related to

this process was studied in [8], but neglecting the contribution

from the frictional interaction between the surfaces in the area

of real contact and also neglecting heat transfer to the substrate.

In [9] the theory of [8] was extended to include these effects,

but assuming that the substrate has infinite thermal conductiv-

ity. In this paper we remove this last restriction and present a

general theory of frictional heating.

There are many experimental studies of the temperature

in frictional contacts, e.g. see [11]. When analyzing

experimental data it is usually assumed that the temperature

is continuous at the rubber-substrate interface. However, the

latter assumption is in general not valid, in particular if surface

roughness exists and the contact area is incomplete within

the nominal contact region. One needs to use a heat transfer
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description [12–19] which relates the temperature jump TR−TS

between the rubber surface (TR) and the substrate surface (TS)

to the heat current J through the interface via J = α(TR −TS),

where the heat transfer coefficient α in general depends on the

sliding speed [9]. We used this more general approach in [9]

and also in this paper.

2. Qualitative discussion

Consider a rubber block sliding on a substrate, e.g. a road

surface, with random surface roughness. We assume that

the substrate can be considered as a rigid material. There

will be two contributions to the rubber friction, namely (a) a

contribution from the viscoelastic deformations of the rubber

which result from the pulsating deformations (frequency ω)

it is exposed to from the road asperities and (b) another

contribution from the area of real contact. Since most

surfaces have roughness on many length scales and since

smaller wavelength roughness (wavelength λ) generate higher

deformation frequencies ω ≈ v/λ (where v is the sliding

speed), there will be a wide band of perturbing frequencies

usually extending over many frequency decades.

The dissipated frictional energy density, Q̇(x, t), will

be distributed highly non-uniformly in space (and time). In

the vicinity of big asperities, the dissipated energy density

is small while close to smaller asperities it is higher, and

right at the rubber-road interface, in a narrow layer of

nanometer thickness, the dissipated energy density (due to the

adhesive interaction, process (b)) may be very high. Thus the

temperature distribution resulting from the spatial distribution

of dissipated energy will, at least for high sliding speeds, be

highly non-uniform, changing particularly rapid close to the

interfacial contact area. The calculation of the spatial and time

dependency of the temperature field is a very complex problem

involving solving the heat diffusion equation

(

∂

∂t
− D∇2

)

T (x, t) =
Q̇(x, t)

ρCp

, ABC

where the heat diffusion constant D = κ/ρCp, with a source

term Q̇(x, t) which in general varies rapidly with the spatial

and time coordinates over many decades in length and time

scales. Clearly, this problem cannot be solved exactly but

requires some approximate procedure.

It is usually possible to write the temperature field T (x, t)

as the sum of a slowly varying term T0(x, t), plus a fast (in

space and time) varying term which we will refer to as the flash

temperature. The slowly varying T0 (background temperature)

is, at least in part, the result of the accumulated (or cumulative)

effect of the flash temperature. Thus the increase in the

background temperature in a tire during breaking is mainly due

to the cumulative effect of the flash temperature as the rubber

slide over the road surface asperities. For a tire during pure

rolling the background temperature is instead mainly due to

the energy dissipation in the rubber as a result of compression-

decompression of the tread blocks as they pass through the

tire-road footprint and due to the flexing of the tire side walls.

In both cases the energy dissipated in the rubber will gradually
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FDEHIK 1. Hot tracks on the rubber surface (dotted area) resulting
from the flash-temperature arising in the rubber-road macroasperity
contact regions (filled circular regions). (a) shows the hot tracks
assuming negligible thermal diffusion and (b) when thermal
diffusion is included.

heat up the tire on timescales of order second (during breaking)

or longer (during rolling). Both the flash and the background

temperature depend in general on external conditions, such as

the air and road temperature, or dry or wet condition. However

for large slip velocities the flash temperature becomes almost

independent of these external conditions. In this paper we

will assume that the initial (at time t = 0) rubber temperature

is constant T0(x, 0) = T0R, where T0R is independent of the

spatial coordinate x. Similarly, we assume that the initial

substrate (or road) temperature T0S is constant.

The decomposition of the temperature field into a fast

varying flash temperature and a slowly varying background

temperature is of course only approximate. In particular, the

interaction between hot spots and hot tracks introduce another

important (short) time-scale effect usually not considered in

analytical studies of the influence of temperature on friction.

We illustrate this effect in figure 1(a) where we show the

hot tracks on the rubber surface resulting from sliding over

road asperities. When the sliding distance is long enough

a road asperity—rubber contact area behind another contact

region will move into the hot tracks produced by the road

asperity—rubber contact regions in front of it. At high enough

sliding speed the hot track also gets slightly broadened by heat

diffusion (see figure 1(b)). We refer to the interaction between

hot spots and hot tracks as a kinetic thermal interaction. If lav

denotes the average sliding distance needed for a macroasperity

contact region to move into the hot track from a macroasperity

contact region in front of it, then it takes ∼ t = lav/v sliding

time before interaction of hot spots becomes important. During

this time a hot track has broadened by thermal diffusion by

the amount r ≈ (Dt)1/2. Using t = lav/v this gives r ≈
(Dlav/v)1/2. Note that r < lav requires v > v1 = D/lav. In a

typical case (rubber) D ≈ 10−7 m2 s−1 and with lav ≈ 10−3 m

we get v1 = 10−5 m s−1.

In this study we assume that the rubber surface is smooth

and all the roughness exist on the substrate (road) surface.

In this case, if a road asperity makes contact with the rubber
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block it will stay in contact the whole time from the leading

edge of the rubber block to the trailing edge of the block. Thus,

the road asperity will continuously heat up and no stationary

temperature distribution will develop.

3. Theory

3.1. Basic theory

The following study is based on the rubber friction theory

developed in [8, 9, 20]. For a rubber block in dry contact

with a hard and rough solid there are two main contributions

to rubber friction, namely (a) a contribution derived from

the energy dissipation inside the rubber due to the pulsating

deformations to which it is exposed to during sliding and (b) a

contribution from the shearing processes occurring in the area

of real contact. For dry surfaces, the contribution (b) may have

different physical origins, e.g. (i) shearing a thin (typically

some nm) fluid-like contamination film, or (ii) involving

segments of rubber molecules at the rubber surface undergoing

binding (to the road surface)–stretching–debonding cycles, or

(iii) interfacial crack propagation. Two other contributions to

the friction from the area of real contact could result from

(iv) rubber wear processes, or (v) the scratching of the hard

rubber filler particles (e.g. silica) with the road surface. The

contribution from the area of real contact is usually referred

to as the adhesive contribution to rubber friction, but this

terminology is correct only if the main contribution to the

friction from the area of real contact is derived from processes

(ii) and (iii). Our present understanding, after analyzing a large

set of experimental data is that for asphalt or concrete road

surfaces, process (ii) gives the dominant contribution in most

cases. The rubber friction experiments of Klüppel et al [10]

were analyzed assuming that process (iii) dominates.

For sliding at a constant velocity v and neglecting

frictional heating, the friction coefficient due to process (a) is:

µ ≈
1

2

∫ q1

q0

dq q3 C(q)S(q)P (q)

×
∫ 2π

0

dφ cos φ Im
E(qv cos φ, Tq)

(1 − ν2)σ0

, ALC

where σ0 is the nominal contact stress, C(q) the surface

roughness power spectrum and E(ω, Tq) the rubber

viscoelastic modulus for the temperature Tq defined below.

The friction coefficient depends on the time t via the time-

dependency of the velocity v and the temperature Tq .

The function P(q) = A(ζ )/A0 is the relative contact area

when the interface is observed at the magnification ζ = q/q0,

where q0 is the smallest (relevant) roughness wavevector.

We have

P(q) =
2

π

∫ ∞

0

dx
sinx

x
exp

[

−x2G(q)
]

= erf

(

1

2
√

G

)

,

(3)

where

G(q) =
1

8

∫ q

q0

dq q3C(q)

∫ 2π

0

dφ

∣

∣

∣

∣

E(qv cos φ, Tq)

(1 − ν2)σ0

∣

∣

∣

∣

2

. (4)

The factor S(q) in (2) is a correction factor which takes into

account that the asperity induced deformations of the rubber are

smaller than if complete contact would occur in the (apparent)

contact areas observed at the magnification ζ = q/q0. For

contact between elastic solids this factor reduces the elastic

asperity-induced deformation energy and including this factor

gives a distribution of interfacial separation in good agreement

with experiments and exact numerical studies [21].

The interfacial separation describes how an elastic (or vis-

coelastic) solid deforms and penetrates into the roughness val-

leys and it is these (time-dependent) deformations which cause

the viscoelastic contribution to rubber friction. We assume that

the same S(q) reduction factor as found for elastic contact is

valid also for sliding contact involving viscoelastic solids. For

elastic solids S(q) is well approximated by

S(q) = γ + (1 − γ )P 2(q), AMC
where γ ≈ 1/2. Below we will use the same expression for

viscoelastic solids. Note that S → 1 as P → 1 which is an

exact result for complete contact. In fact, for complete contact

the expression (2) with S = 1 is exact.

The second contribution (b) to the rubber friction

force, associated with the area of contact observed at the

magnification ζ1 = q1/q0, is given by τf A1. Here, τf (v, T )

is the (weakly) velocity and temperature-dependent effective

frictional shear stress acting in the contact area A1 =
A(ζ1) = P(q1)A0. In this study we consider the flash

temperature associated with the viscoelastic contribution and

the contribution from the area of real contact to the rubber

friction. We note that recently the rubber friction theory

presented above (in the absence of the frictional heating, i.e.

with Tq = T0R) has been shown to be in good agreement with

exact numerical results [22].

Consider a macroasperity contact region which we treat

as a circular region with radius R (typically R ≈ 1 mm). In

a macroasperity contact region occur many smaller closely

spaced microasperity contact regions. We smear out laterally

the frictional energy generated by these microasperity contact

regions, which will result in a function Q̇(z, t) describing the

dissipated frictional energy per unit time and volume a distance

z into the solid in a macroasperity contact region. Let us write

Q̇(z, t)

ρCp

=
∫ ∞

0

dq f (q, t)e−2qz. ANC

We define the heat flow current

J (t) =
∫ ∞

0

dz Q̇(z, t), (7)

and the temperature

Tq(t) =
∫ ∞

0
dz T (z, t)e−2qz

∫ ∞
0

dz e−2qz
. (8)

In [8] we have shown that

Tq(t) = T0R +

∫ t

0

dt ′ h(w(t, t ′))

∫ ∞

0

dp f (p, t ′)
1

π

×
∫ ∞

0

dk
4q2

k2 + 4q2

4p

k2 + 4p2
e−Dk2(t−t ′), AOC
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where

f (p, t) =
v(t)

ρCp

q4C(q)S(q)
P (q, t)

P (qm, t)

×
∫ 2π

0

dφ cosφ Im
E(qv(t)cosφ, Tq(t))

1 − ν2
, (10)

and

h(w) = 1 −
2

π
w(1 − w2)1/2 −

2

π
arcsin(w), (11)

where

w = w(t, t ′) = [x(t) − x(t ′)]/2R,

where x(t) is the coordinate of the sliding contact at time

t . For uniform sliding speed we have x(t) = vt and w =
(v/2R)(t − t ′). In (10) P(qm, t) = Am(t)/A0 is the relative

contact area at the magnification ζm = qm/q0 where the

macroasperity contact regions are observed (see [8]).

The integral over k in (9) cannot be solved analytically but

in [9] we have shown that

Tq(t) ≈ T0R +

∫ t

0

dt ′
∫ ∞

0

dp f (p, t ′)

×
qh(w(t, t ′))

q + p + qp[4πD(t − t ′)]1/2
. ABLC

We now consider the temperature increase due to the frictional

interaction in the area of contact (sometimes denoted as the

adhesive rubber-counter surface contribution to the friction).

In this case we expect the dissipated frictional energy to be

localized in a thin layer of nanometer thickness d at the sliding

interface. Thus we take

f (q, t) = f (t)qaδ(q − qa), (13)

with qa ≈ 1/d. This gives

Q̇(z, t)

ρCp

= f (t)qae−2qaz. (14)

From (7) we get

f (t) =
2J (t)

ρCp

. ABMC

Substituting (13) and (14) in (12) gives

Tq(t) ≈ T0R +
1

ρCp

∫ t

0

dt ′
2qqah(w(t, t ′))J (t ′)

q + qa + qqa[4πD(t − t ′)]1/2
.

ABNC
Unless the time t is extremely small, the temperature at the

surface is obtained from (16) as

Tq(t) ≈ T0R +
1

ρCp

∫ t

0

dt ′
2h(w(t, t ′))J (t ′)

[4πD(t − t ′)]1/2
. ABPC

In general one expects a temperature jump at the interface

between two solids. The heat current through the interface

is related to the temperature on the two sides, say the rubber

temperature TR and the substrate (e.g. asphalt road surface)

temperature TS via [12, 13, 19]

J1 = α(TR − TS), ABQC

where α is the heat transfer coefficient which in general

depends on the sliding speed (see [9]). If the heat current

flowing into the substrate is J1, the heat current into the rubber

will be J0(t) = J (t) − J1(t).

The substrate temperature in a macroasperity contact

region is given by

TS(t) ≈ T0S +
1

ρ ′C ′
p

∫ t

0

dt ′
2J1(t

′)

[4πD′(t − t ′)]1/2
,

or

TS(t) ≈ T0S +

∫ t

0

dt ′
g(t ′)

[4πD′(t − t ′)]1/2
, ABOC

where

g(t) =
2J1(t)

ρ ′C ′
p

. (20)

Here T0R and T0S are the rubber and road initial (t =
0) temperatures and Cp and C ′

p the rubber and road heat

capacities. The heat diffusion coefficients D and D′ of the

rubber and road surfaces are defined by D = κ/ρC and D′ =
κ ′/ρ ′C ′, where κ (ρ) and κ ′ (ρ ′) are the heat conductivities

(mass densities) of the rubber and the road, respectively. If

µcont is the contribution to the friction coefficient from the

area of contact, then

J (t) = µcont(t)σ0v(t)A0/Am,

and the equation J0 + J1 = J can be written as

f (t) + ǫg(t) =
2µcont(t)σ0v(t)

ρCp

A0

Am

, (21)

where

ǫ =
ρ ′C ′

p

ρCp

. (22)

We now consider sliding at a constant velocity v. Let us

assume that the surface temperature on the road asperities in

the macroasperity contact region changes slowly with time

compared to the time period R/v. This will be the case after a

sliding distance s ≫ R. It also holds for any sliding distance

in the limiting case where the thermal conductivity of the

substrate (road) surface is infinitely high (see [9]). In the latter

case the temperature in the substrate will be T0S everywhere

and in particular TS = T0S.

When the surface temperature on the road asperities in the

macroasperity contact region changes slowly with time we can

treat TS(t) as a constant during the time period from t to t + τ

where τ = 2R/v. Thus the quantities f (p, t) and f (t) can be

treated as (approximately) time independent during the time

interval from t to t + τ . We have

J0 = J−J1 = J−α(TR−TS) = µcontσ0vA0/Am−α(TR−TS),

or

f (t) =
2µcontσ0v

ρCp

A0

Am

−
2α

ρCp

(TR − TS). ALSC
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When the speed v is constant we have x(t) = vt and w(t, t ′) =
v(t − t ′)/(2R). For this case we have shown in [9] that

Tq = T0R +

∫ ∞

0

dp f (p, t)
2R

v

×
∫ 1

0

dw
qh(w)

q + p + qp[4πD(2R/v)w]1/2

+f (t)
2R

v

∫ 1

0

dw
qqah(w)

q + qa + qqa[4πD(2R/v)w]1/2
. ALTC

The temperature at the rubber surface

TR = T0R +

∫ ∞

0

dp f (p, t)
2R

v

×
∫ 1

0

dw
q1h(w)

q1 + p + q1p[4πD(2R/v)w]1/2

+f (t)
2R

v

∫ 1

0

dw
qah(w)

2 + qa[4πD(2R/v)w]1/2
. (25)

If we denote

1Tvisc =
∫ ∞

0

dp f (p, t)
2R

v

×
∫ 1

0

dw
q1h(w)

q1 + p + q1p[4πD(2R/v)w]1/2
, (26)

1Tcont =
2µcont(t)σ0v

ρCp

A0

Am

2R

v

×
∫ 1

0

dw
qah(w)

2 + qa[4πD(2R/v)w]1/2
, (27)

and

γ =
2α

ρCp

2R

v

∫ 1

0

dw
qah(w)

2 + qa[4πD(2R/v)w]1/2
, (28)

we get by combining (23) and (25)

TR =
T0R + 1Tvisc + 1Tcont + γ TS

1 + γ
. ALOC

The time evolution of TS(t) can be obtained approximately

from (19) and (26)–(29). From (18), (19) and (29) we get

TS(t) = T0S +
β

√
π

∫ t

0

dt ′
Tv(t

′) − TS(t
′)

(t − t ′)1/2
,

where

β =
α

(1 + γ )(ρ ′C ′
pκ ′)1/2

,

and

Tv = T0R + 1Tvisc + 1Tcont.

This equation can be solved for TS(t) using Laplace

transformation. We get

TS(t) = T0Serfcx(βt1/2) +

∫ t

0

dt ′ 5(t − t ′)Tv(t
′), ASUC

where

5(t − t ′) =
d

dt ′
erfcx[β(t − t ′)1/2].

v
s

L

d

FDEHIK 2. Rubber block (green) sliding on a substrate (road surface,
black). After the sliding distance s the rubber block (and road
surface) will heat up and we are interested in the temperature at the
interface at different distances d from the leading edge of the block.

Here

erfcx(x) = ex2

erfc(x) =
2

√
π

∫ ∞

x

dt ex2−t2

,

and one can show that erfcx(x) ≈ 1/(x
√

π) for large x, so

that 5(t − t ′) ∼ (t − t ′)−3/2 for large t − t ′. We expect Tv(t)

to vary slowly with t for large enough t and since the factor

5(t − t ′) decays for large t − t ′ in (30) we approximate

TS(t) ≈ T0Serfcx(βt1/2) + Tv(t)

∫ t

0

dt ′ 5(t − t ′)

= Tv + (T0S − Tv)erfcx(βt1/2). ASBC
With TR obtained from (29) and (31) we can calculate f (t)

using (23) and Tq from (24). Note that as α → ∞ then

γ → ∞ and TR → TS so the temperature is continuous

in the macroasperity contact regions when the heat transfer

coefficient α becomes very large. When α → 0 then γ → 0

and TR → T0R + 1Tvisc + 1Tcont becomes independent of the

substrate temperature.

The discussion above is for an infinite sized rubber block.

Consider now a finite size block with length L in the sliding

direction. Let us study the heat distribution a distance d from

the leading edge of the rubber block (see figure 2). Let s be

the sliding distance and t = s/v the sliding time. If s < d

the road macroasperity which occurs at a distance d from the

leading edge of the rubber block at time t will have been in

contact with the rubber block for the whole time period t so in

this case

TS(t) ≈ Tv + (T0S − Tv)erfcx(β(s/v)1/2) for s < d. ASLC
However, if s > d the macroasperity has only been in contact

with the rubber block for the time d/v hence

TS(t) ≈ Tv + (T0S − Tv)erfcx(β(d/v)1/2) for s > d. (33)

Using (29), (32) and (33) we can calculate the surface

temperatures TR(t) and TS(t) in a macroasperity contact region

a distance d from the leading edge of the rubber block. The

calculated friction coefficient µ determines the frictional shear

stress σk = µp where p is the nominal contact pressure. Thus

by varying d one can determine the rubber temperature, road

macroasperity temperature and local frictional shear stress at

any distance d from the rubber block leading edge.

3.2. Kinetic thermal interaction between frozen hot spots

Let us now assume that the macroasperity contact regions

are circular regions with radius R and that there are N such

*
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regions on the surface area A0. After the sliding distance s the

total surface area moved over (covered by) the macroasperity

contact regions will be Ns2R. If Q̄ denotes the total frictional

energy per unit area after sliding distance s = vt we have, if

µ is constant, Q̄ = µσ0s. The total dissipated energy Q̄A0

must equal the energy dissipated in the macroasperity contact

regions which equals QlocNs2R, where Qloc is the energy per

unit area dissipated in the macroasperity contact regions. Thus

Q̄A0 = QlocNs2R,

or

Q̄ = Qloc

Ns2R

A0

.

Using that Am = NπR2 is the total macroasperity contact

area, we get

Q̄ = Qloc

Am

A0

2s

πR
. (34)

If we neglect heat diffusion (resulting in what we refer to

as frozen temperature spots) then when the sliding distance

s > lav, where lav is the average sliding distance before a

macroasperity contact region enters into the hot track generated

by another macroasperity contact region in front of it, kinetic

thermal interaction will occur (see figure 1). We can take

into account the kinetic interaction between hot spots in the

following way: For the sliding distance s = vt < lav there is

no interaction between the hot spots and (24) and (25) correctly

describe the temperature in the macroasperity contact regions.

For s > lav we include the interaction between the hot spots in

an average way. That is, we smear out the flash temperature

distribution laterally but we neglect the thermal diffusion so

that the dependency of the background temperature on the

normal coordinate z is the same (and independent of time)

as that of the flash temperature. In section 3.3 we will include

the (time dependent) thermal broadening (in the z-direction)

of the temperature profile.

Let us write (24) as

Tq = T0R + T0q(t) +

∫ ∞

0

dp f (p, t)M(p, q)

+f (t)N(q), ASMC
where T0q(t) is the increase in the background temperature

due to the cumulative contribution from the flash temperature.

When the kinetic thermal interaction is neglected as in

section 3.1 T0q = 0. However, in the present case

T0q(t) = Q(t)

∫ ∞

0

dp f (p, t)M(p, q)

+Q(t)f (t)N(q), ASNC
where Q(t) = 0 for s = vt < lav and Q(t) = 2Q̄(t)/Qloc =
2(Am/A0)(2s/πR) for s > lav. The factor 2 in this expression

results from the fact that the temperature at the exit side of a

macroasperity contact region is twice as high as the average

flash temperature of the macroasperity contact region. Using

(35) and (36) the temperature TR = Tqa
at the rubber surface

in the macroasperity contact regions becomes

TR = T0R + (1 + Q)

∫ ∞

0

dp f (p, t)M(p, qa)

+(1 + Q)f (t)N(qa). ASPC

The Q-term in this expression reflects the increase in the

background temperature (which now depends on q or on

the distance z into the rubber) due to frictional heating,

but neglecting heat diffusion. Thus, this estimate of

the background temperature will tend to overestimate the

temperature increase and is accurate only at very high sliding

speed v and small sliding distance s where there is no time for

the temperature field to change due to thermal diffusion.

Combining (37) and (23) results again in (29) but with

1Tvisc, 1Tcont and γ having the additional factor (1 + Q(t)).

Finally note that the average rubber surface temperature in

the non-contact regions outside of the macroasperity contact

regions is

T̄R = T0R + T0qa
= T0R +

Q

1 + Q
(TR − T0R) =

T0R + QTR

1 + Q
.

ASQC
We can determine lav as follows. Assume that the rubber block

has the width W orthogonal to the sliding direction. If s is the

sliding distance there will be N = Wsc hot spots within the

area Ws, where c = (Am/A0)/(πR2) is the concentration of

hot spots. Let d denote the width of the hot track a distance

s away from the macroasperity contact region from which it

arises. If we neglect thermal diffusion d = 2R independent of

s, but when thermal diffusion is included the hot track becomes

wider and d > 2R. As long as W > Nd the tracks after

the macroasperity contact regions will cover a fraction of the

width of order Nd/W (see figure 1). We define lav as the

sliding distance s where Nd/W ≈ 1/2 or scd = 1/2. This

gives lav = 1/(2cd) = (A0/Am)(πR2/2d). With d = 2R

(i.e. neglecting the thermal broadening of the hot track) we get

lav = (A0/Am)(πR/4). At low sliding speed it is important

to take into account the increase in the width of the hot tracks

due to thermal diffusion. Thus, if 2(Dt)1/2 > R, where the

diffusion time t = lav/v, we use d = 4(Dt)1/2. The condition

2(Dt)1/2 = 2(Dlav/v)1/2 = R with lav = (A0/Am)(πR/4)

gives v = v∗ = (A0/Am)(πD/R). For v < v∗ we use

lav =
1

2cd
=

A0

Am

πR2

8

(

v

Dlav

)1/2

,

or

lav =
(

A0

Am

πR2

8

)2/3
( v

D

)1/3

.

To summarize:

lav =
(

A0

Am

πR2

8

)2/3
( v

D

)1/3

, for v <
A0

Am

πD

R
and

lav =
A0

Am

πR

4
, for v >

A0

Am

πD

R
.

3.3. Kinetic thermal interaction between hot spots

The time variation in the background temperature is due to the

accumulated (or cumulative) effect of the flash temperature. In

the study in section 3.2 we did not take into account that the hot

track flash temperature field will broaden in the z-direction due

to thermal diffusion. This broadening is characterized by the

5
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thermal (diffusion) length lth = (4Dt)1/2 and corresponding

wavevector qth = (2lth)
−1. In appendix A we study this effect

and show that the temperature in the macroasperity contact

regions can be written as:

Tq = T0R + T0q(t) +

∫ ∞

0

dp f (p, t)M(p, q)

+f (t)N(q), ASOC
where

T0q(t) ≈
∫ ∞

1

dξ
2

ξ 3

(

1 − e−q/(qthξ)
)

T0,qthξ (0) + T0q(0)

−
∫ ∞

1

dξ
2

ξ 3

q

q + qthξ
T0,q+qthξ (0), (40)

and

f (t) =
2µcontσ0v

ρCp

A0

Am

−
2α

ρCp

(TR − TS)

= f0 − ǫ(TR − TS). (41)

In (40)

T0q(0) = Q

∫ ∞

0

dp f (p, t)M(p, q) + Qf (t)N(q).

The rubber surface temperature in the macroasperity contact

regions is given by (39) for q = qa:

TR = T0R +

∫ ∞

1

dξ
2

ξ 3
T0,qthξ (0) +

∫ ∞

0

dp f (p, t)M(p, qa)

+f (t)N(qa) = T0R

+

∫ ∞

1

dξ
2

ξ 3

[

Q

∫ ∞

0

dp f (p, t)M(p, qthξ)

+Qf (t)N(qthξ)

]

+

∫ ∞

0

dp f (p, t)M(p, qa)

+f (t)N(qa) = T0R +

∫ ∞

0

dp f (p, t)

×
[

Q

∫ ∞

1

dξ
2

ξ 3
M(p, qthξ) + M(p, qa)

]

+f (t)

[

Q

∫ ∞

1

dξ
2

ξ 3
N(qthξ) + N(qa)

]

. ATLC
If we write this equation as

TR = T0R + 1Tvisc + f S,

we get using (41)

TR = T0R + 1Tvisc + [f0 − ǫ(TR − TS)]S,

or

TR =
T0R + 1Tvisc + 1Tcon + γ TS

1 + γ
,

where (see appendix A):

1Tvisc =
∫ ∞

0

dp f (p, t)
2R

v

×
[ ∫ 1

0

dw
q1h(w)

q1 + p + q1p[4πD(2R/v)w]1/2

+Q

∫ ∞

1

dξ
2

ξ 3

×
∫ 1

0

dw
qthξh(w)

qthξ + p + qthξp[4πD(2R/v)w]1/2

]

, ATSC

1Tcont =
2µcont(t)σ0v

ρCp

A0

Am

2R

v

×
[ ∫ 1

0

dw
qah(w)

2 + qa[4πD(2R/v)w]1/2
+ Q

∫ ∞

1

dξ

×
2

ξ 3

∫ 1

0

dw
qaqthξh(w)

qa + qthξ + qaqthξ [4πD(2R/v)w]1/2

]

,

(44)

and

γ =
2α

ρCp

2R

v

[ ∫ 1

0

dw
qah(w)

2 + qa[4πD(2R/v)w]1/2
+ Q

∫ ∞

1

dξ

×
2

ξ 3

∫ 1

0

dw
qaqthξh(w)

qa + qthξ + qaqthξ [4πD(2R/v)w]1/2

]

.

(45)

3.4. Relation between Tq and T (z)

The theory above predicts the temperature Tq(t) but we are

really interested in T (z, t) which can be obtained from Tq(t)

as follows. We have (we suppress the time-dependency):

Tq =
∫ ∞

0
dz T (z)e−2qz

∫ ∞
0

dz e−2qz
= 2q

∫ ∞

0

dz T (z)e−2qz.

We can obtain T (z) from this equation by ‘inverting’ the

equation numerically. Here we instead present an approximate

procedure to obtain T (z) from Tq . We note that

Tq = 2q

∫ ∞

0

dz T (z)e−2qz ≈ 2q

∫ 1/2q

0

dz T (z).

Thus
∂

∂q

(

Tq

2q

)

≈ −
1

2q2
T (z = 1/2q),

or

− q2 ∂

∂q

(

Tq

q

)

≈ T (z = 1/2q),

or

T (z = 1/2q) ≈ Tq − q
∂Tq

∂q
, (46)

from which T (z) can be obtained by numerical derivation of

Tq . If we write

q = q0eµ,

and denote Tq with Tµ for simplicity, we get

T (z = 1/2q) ≈ Tµ −
∂Tµ

∂µ
. (47)

3.5. Energy conservation

During sliding most of (and in the theory all) the frictional

energy is transferred into heat. If the friction coefficient is

approximately constant during the sliding distance s, the total

frictional energy per unit surface area is µkpvt , where t = s/v

is the sliding time. The transfer of heat energy to the substrate

7
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FDEHIK 3. Red line: the heat energy (per unit nominal surface
contact area A0) stored in the rubber at the end of the sliding
process. Green line: the heat energy transferred to the road divided
by A0. Pink line: sum of the above mentioned contributions. Blue
line: the dissipated rubber friction energy (divided by A0), µtotps,
where s = 0.5 m is the sliding distance. The rubber initial
temperature T0R = 20 ◦C and the road initial temperature
T0R = 20 ◦C. The blue and pink lines almost overlap, i.e. energy
conservation is almost obeyed which is a non-trivial result because
of the approximate treatment of the heat diffusion.

(road) equals α(TR − TS)Amt and the heat energy stored per

unit surface area in the rubber equals

ρCp

∫ ∞

0

dz [T (z, t) − T0R] = ρCp limq→0

Tq(t)

2q
.

Thus

µkps = α(TR − TS)
Ams

v
+ ρCplimq→0

Tq(t)

2q
. (48)

This energy conservation law is very well satisfied in our

numerical calculations. This is illustrated in figure 3 which

shows the various contributions to the dissipated energy when

a rubber block has been sliding s = 0.5 m on an asphalt road

surface (using the same system parameters as in section 4).

The rubber and road initial temperatures are both 20 ◦C. The

green line is the heat energy transferred to the road divided

by A0 (first term on the right hand side in (48)). The red

line shows the heat energy (per unit nominal surface contact

area A0) stored in the rubber at the end of the sliding process

(second term on the right hand side in (48)) and the pink line is

the sum of both. The blue line is the dissipated rubber friction

energy (divided by A0), µtotps. The blue and pink lines almost

overlap, i.e. energy conservation is almost obeyed which is a

non-trivial result because of the approximate treatment of the

heat diffusion. Note that at low sliding speed, v < 10−4 m s−1,

nearly all the frictional energy is transferred to the road which

implies that negligible frictional heating of the rubber block

occurs, while for v ≈ 2 cm s−1 about half of the frictional

energy is transferred to the road. As the sliding distance

increases a larger and larger fraction of the frictional energy

will be transferred to the road.

Figure 4 shows similar results as in figure 3, but now for

T0R = 40 ◦C and T0S = 20 ◦C (unchanged). The sliding

-3
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FDEHIK 4. Same as in figure 3 (�b VW� T0R = 40 ◦C and for the sliding
distance s = 3 cm. Note that the blue and pink lines almost overlap,
i.e. energy conservation is almost obeyed which is a non-trivial
result because of the approximate treatment of the heat diffusion.

distance s = 3 cm as typical for ABS (anti-lock braking

system) braking. In this case, for low sliding speed there is

a large transfer of heat energy from the rubber to the road.

This results from the long contact time t = s/v and from the

fact that the rubber block is hotter than the substrate, resulting

in a flow of heat energy to the road. Nevertheless, the sum of

the heat energy transferred to the road and the heat energy in the

rubber is again very close to the frictional energy dissipation,

i.e. energy conservation is satisfied to a good approximation.

4. Numerical results

We now present numerical results to illustrate the theory. All

results are for a rubber tread compound (denoted A) sliding

on an asphalt road surface. The surface roughness power

spectrum of the road surface and the viscoelastic modulus

of the rubber compound are given below in section 5. In

all the calculations we assume the nominal contact pressure

σ0 = 0.065 MPa, which is similar to what is used in some

of our friction experiments. The rubber block is L = 5 cm

long in the sliding direction. The rubber heat conductivity

κ = 0.23 W mK−1, heat capacity C = 1650 J kg−1 K−1 and

mass density ρ = 1200 kg m−3. The road heat conductivity

κ = 1.0 W mK−1, heat capacity C = 700 J kg−1 K−1

and mass density ρ = 2700 kg m−3. The road-rubber

heat transfer coefficient α = 107 W m−2 K−1 is assumed

velocity independent and so large that the temperature is

(almost) continuous in the macroasperity contact regions. The

assumption that the surface temperature is the same on the

rubber and road side of the contact is often made, but we

note that our theory also allows for a discontinuity in the

temperature, which would be the case if the heat transfer

coefficient is much smaller than assumed above (see [9]).

In the numerical results presented below we assume that

there is a contribution to the friction coefficient from the

area of contact, µcont(v, T ) = (τf (v, T )/σ0)(A1/A0). The

area of contact A1 and the frictional shear stress τf (v, T )

-
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FDEHIK 5. The temperature in the macroasperity contact regions a
distance d = 3 cm from the leading edge of the rubber block after
sliding the distance s = 3 cm as a function of the sliding speed. The
rubber initial temperature is T0R = 20 ◦C (blue curve) and 40 ◦C (red
curve), while the road (or substrate) initial temperature is
T0S = 20 ◦C.

depends on sliding velocity v and on temperature T . Here

we use the τf (v, T ) determined in [23, 24] by comparing

theory to experiment. As a function of the logarithm of the

sliding velocity, τf (v, T ) was found to be a wide Gaussian-like

curve with a full width at half maximum of about 5 velocity

decades. The physical origin of the frictional shear stress may

be bonding-stretching-debonding cycles of rubber molecules

at the sliding interface, as first suggested by Schallamach [25]

and considered in more detail in [26, 27]. The initial (t = 0)

road temperature is always T0S = 20 ◦C and the initial rubber

block temperature T0R is either 20 ◦C or 40 ◦C.

During ABS breaking of a car the tread blocks in the

tire-road footprint slide at most few cm and in this section

we present results for the sliding distance s = 3 cm. (In

tire applications the nominal contact pressure is typically

∼0.3 MPa, i.e. much larger than we use here. However, in the

experiments presented in the next section the nominal contact

pressure is ≈0.065 MPa and we use the same value here to be

able to compare with the results in section 5.)

Figure 5 shows the temperature in the macroasperity

contact regions a distance d = 3 cm from the leading edge

of the rubber block, as a function of the sliding speed. The

initial rubber temperature is T0R = 20 ◦C (blue curve) or 40 ◦C

(red curve) and the initial road (or substrate) temperature is

T0S = 20 ◦C. When the road and rubber initial temperatures

both equal 20 ◦C, the temperature in the macroasperity contact

regions stays close to 20 ◦C until the sliding velocity reaches

≈10 cm s−1, after which the temperature rapidly increases

reaching about 100 ◦C at ≈3 m s−1.

When the rubber initial temperature is 40 ◦C, the

temperature for sliding speeds v < 1 µm s−1 is again close

to the road initial temperature. The reason for this is the ∼5

times higher thermal conductivity of the road as compared to

the rubber. (In addition, the leading edge of the rubber block

continuously moves into contact with the ‘cold’ road surface

in front of the rubber block, which (for long sliding distance)

is another reason for why the temperature at the rubber surface
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FDEHIK 6. The average rubber surface temperature a distance
d = 3 cm from the leading edge of the rubber block after sliding the
distance s = 3 cm as a function of the sliding speed. The rubber
initial temperature is T0R = 20 ◦C (blue curve) and 40 ◦C (red curve),
while the road (or substrate) initial temperature is T0S = 20 ◦C.
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Figure 7. The temperature (at d = 3 cm) as a function of the
distance z from the surface in a macroasperity contact region for
different sliding speeds, after sliding the distance s = 3 cm. Note
that the temperature is maximal at the surface for the two higher
sliding speeds (v = 4.6 m s−1 and 2.5 m s−1) while staying nearly
constant for the two lower sliding speeds. The rubber and road
initial temperatures are T0R = 20 ◦C and T0S = 20 ◦C.

may be closer to the road surface.) However, for sliding speeds

v > 100 µm s−1 the temperature in the macroasperity contact

region approaches the initial rubber temperature, 40 ◦C and

then for v > 10 cm s−1, the temperature rapidly increases as

for the case where the initial road and rubber temperatures are

both 20 ◦C.

Figure 6 shows similar results as in figure 5 but now for

the average rubber surface temperature, a distance d = 3 cm

from the leading edge of the rubber block (the rubber surface

temperature is averaged in the y-direction, orthogonal to the

sliding direction).

Figure 7 shows the temperature (at d = 3 cm) as a function

of the distance from the surface in a macroasperity contact

region for different sliding speeds. The initial rubber and

road temperatures are both 20 ◦C. Note that the temperature

is maximal at the surface for the two higher sliding speeds

i
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Figure 8. The temperature (at d = 3 cm) as a function of the
distance z from the surface in a macroasperity contact region for
different sliding speeds. Note that the temperature is maximal at the
surface for the two higher sliding speeds (v = 4.6 m s−1 and
2.5 m s−1) while staying nearly constant for the two lower sliding
speeds. The rubber and road initial temperatures are T0R = 40 ◦C
and T0S = 20 ◦C.

(v = 4.6 m s−1 and 2.5 m s−1) and nearly constant and equal

to ≈20 ◦C for the two lower sliding speeds.

Figure 8 shows similar results as in figure 7 but now when

the rubber initial temperature equal T0R = 40 ◦C. Note again

that the temperature is maximal at the surface for the two

higher sliding speeds (v = 4.6 m s−1 and 2.5 m s−1) and nearly

constant for the two lower sliding speeds. However, in this

case the temperature for the three highest velocities approaches

40 ◦C at z ≈ 1 mm. This effect is due to the short rubber-road

sliding (or contact) time t = s/v at the higher velocities and

due to the finite time t ≈ l2/D necessary for heat diffusion to

transfer energy over some distance l.

5. Comparison of theory with experiment

At the Bridgestone lab we have developed a rubber friction

tester where a rubber block is slid on a circular asphalt road

track. Using this new set-up we have studied the temperature

distribution on the road surface behind the rubber block. The

temperature measurements were performed using an infrared

camera. Figure 9 shows the rubber block used in the study

of the temperature development and figure 10 shows the

temperature distribution after a sliding distance of order a

few meter. We note that the temperature is measured by the

infrared camera with an inclination angle of ≈70◦ relative to

the road surface normal (and ≈120◦ from the sliding direction

in the horizontal plane) and for this reason only the road

temperature close to the top regions of the highest asperities is

observed. Thus, the average road surface temperature will

be lower than the temperatures measured with the present

set-up. We note that the macroasperity contact area in the

present case is of order 10% of the nominal contact area, so

if the road temperature at the trailing edge of the rubber road

contact would be measured along the surface normal direction,

the average temperature would (at high sliding speed where

the heat diffusion broadening of the hot temperature spots is

FDEHIK 9. The rubber block used in the experimental study of sliding
friction and temperature development, during sliding on an asphalt
road surface.

small) be of order ≈0.9T0S + 0.1TS. However, at the near

grazing incidence we use the measured average road surface

temperature will be closer to the temperature TS prevailing in

the macroasperity contact regions at the trailing edge.

The power spectrum of the asphalt road track used in this

study is shown in figure 11. The blue line is the measured

data (from engineering line-scan instrument) and the red line

the extrapolated power spectrum. The low and large cut-off

wavevectors, q0 and q1, used in the theory are indicated.

Figure 12 shows the real and imaginary part of the

viscoelastic modulus of the rubber tread compound A used

in the experimental study and in the theory calculations. The

shown modulus was obtained at very small strain amplitude

(0.04% strain) where linear response is stricly obeyed. We also

performed strain sweeps to large strain (of order 100% strain)

at several different temperatures. In the theory calculations

we take into account the strain softening which occurs at the

typical strain prevailing in the rubber-road asperity contact

regions.

In this section we present experimental data and compare

the results with the theory developed above. We also present

theoretical results for the temperature field in the rubber

which cannot be probed experimentally with the present set-

up. Figure 13 shows the measured maximum temperatures

on the road surface (in the ‘area of interest’ in figure 10) for

two compounds A and C as a function of the sliding speed

when the normal load is FN = 64 N and FN = 128 N. The

length of the rubber block is about Lx = 4.5 cm and the width

Ly = 2.5 cm. The load FN = 64 N corresponding to about

σ0 ≈ 0.06 MPa nominal contact pressure. Figure 14 shows the

measured friction coefficient for the same systems as figure 13.

We now present calculated results for the rubber

compound A for the same road surface as used in the

experiment above. We first show the temperature distribution

in the rubber block after sliding a distance s between 0.03 m

and 1 m. After sliding a distance s the rubber block (and road

surface) will heat up and we are interested in the temperature

at the interface at different distances d from the leading edge

of the block (see figure 2).

Figure 15 shows the rubber macroasperity (surface)

temperature TR (nearly equal to the road asperity contact

temperature TS) as a function of sliding speed. Results are

shown at the trailing edge of the rubber block (d = 5 cm) for

the sliding distances s = 0.03, 0.1, 0.25, 0.5 and 1 m. Note

that the temperature change is rather small when the sliding

distance increases from 0.5 and 1 m. The reason for this is that

��
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FDEHIK 10. Snapshot picture (infrared camera) of the temperature distribution resulting when the rubber block (see figure 9� �� ���� � ���
meter on an asphalt road surface. The maximum and the average temperature on the road surface quoted below refer to the ‘area of interest’,
a rectangular area (2 cm × 1.5 cm) located a few cm behind the trailing edge of the rubber-road contact area. We did not study in detail the
temperature right at the edge of contact since rubber debris, not yet fully detached from the rubber block, resulted in a local temperature at
the trailing edge which fluctuated rapidly in space and time.
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������ 11. The surface roughness power spectrum of an asphalt
road surface. The blue line is the measured data (from engineering
line-scan instrument) and the red line extrapolated power spectrum.
The small and large cut-off wavevectors, q0 and q1, used in the
analysis are indicated.

 0

 1

 2

 3

-10 -5  0  5  10  15

compound A

T0 = 20
o
C

ImE

ReE

log10 f (Hz)

lo
g

1
0
 E

 (
M

P
a

)

������ 12. The real and imaginary part of the viscoelastic modulus
of a rubber tread compound A. The reference temperature
T0 = 20 ◦C. The shown modulus was obtained with such a small
strain amplitude (0.04% strain) that linear response is stricly obeyed.
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������ 13. The measured maximum temperature on the road
surface at the trailing edge of the sliding rubber block, as a function
of the sliding speed for two different tread compounds A and C and
for the normal load FN = 64 N and 128 N. The sliding distance
s ≈ 3 m.
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������ 14. The measured friction coefficient as a function of the
sliding speed for two different tread compounds A and C and for the
normal load FN = 64 N and 128 N. The sliding distance s ≈ 3 m.

as the rubber block heats up, the heat transfer to the road surface

increases (because the road surface is always at the initial

temperature 20 ◦C at the leading edge of the block-road contact

region) and after a sliding distance of order 1 m the frictional

11
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������ 15. The macroasperity contact region temperature as a
function of sliding speed. Results are shown for sliding distances
s = 0.03, 0.1, 0.25, 0.5 and 1 m at the trailing edge of the rubber
block (d = 5 cm). For the nominal contact pressure p = 0.065 MPa
and road and rubber initial temperature T0S = T0R = 20 ◦C.

 20

 40

 60

 80

 100

 120

 140

 0  0.5  1  1.5  2  2.5  3
v (m/s)

te
m

p
e

ra
tu

re
 (

o
C

)

d=5cm

3cm

1cm

0.3cm

T0S = 20
o
C

T0R = 20
o
C

s = 1m

������ 16. The rubber temperature in the macroasperity contact
regions (solid lines) and the average rubber surface temperature
(dashed lines) at different distances d from the leading edge of the
rubber block, after the sliding distance s = 1 m. For the nominal
contact pressure p = 0.065 MPa and road and rubber initial
temperature T0S = T0R = 20 ◦C.

energy dissipated per unit time nearly equals the transfer of

heat energy per unit time to the road. Figure 15 shows that

the temperature in the macroasperity contact regions, after

sliding 1 m at the speed v = 2 m s−1, is about 110 ◦C at the

trailing edge. This is higher than what we measure on the road

surface which gives ≈80 ◦C. The higher temperature predicted

by the theory is expected partly because in the experiment

the temperature is measured a few cm away from the trailing

edge and partly because the macroasperity contact regions are

very small (of order 1 mm in diameter) and the resolution of

the infrared camera may not be high enough to resolve the

temperature on the length scale of 1 mm.

Figure 16 shows the rubber temperature in the

macroasperity contact regions (solid lines) and the average

rubber surface temperature (dashed lines) at different distances

d from the leading edge of the rubber block, after the sliding

distance s = 1 m. Note that the temperature at the trailing

Lx

Ly

v v

)b()a(

������ 17. Frictional heating is more important when the rubber
block slides parallel the long side Lx as in (a), as compared to along
the short side Ly as in (b).

edge of the rubber-road nominal contact region is much higher

than at the leading edge of the contact region. Again, this is

due to the heating of the road surface during the time it is in

contact with the rubber block.

One important conclusion from figure 16 is that rubber

friction at high enough sliding speeds, where thermal effects

are important, will depend on the orientation of a rectangular

rubber block with the sides Lx and Ly . Thus, if Lx > Ly

the road asperities will stay in contact with the rubber block

for a longer time and heat up more than if the block slides in

the y-direction. We conclude that frictional heating is more

important when the block slides parallel to the long side of the

block (see figure 17 where Lx ≈ 4.5 cm and Ly ≈ 2.5 cm).

We have indeed observed this effect as can be seen in figure 18,

which shows results for three different rubber compounds, A′,

B′ and C′. Thus, frictional heating results in a kinetic friction

force which depends on the orientation of the sliding block,

thus violating the first friction ‘law’ of Leonardo da Vinci [28].

The second law of Leonardo da Vinci, namely that the friction

force is independent of the normal load (or nominal contact

pressure), is of course also violated when frictional heating

becomes important at higher sliding velocities.

The spatial variation of the temperature on the bottom

surface of the rubber block will result in local rubber wear rates

which depend on the distance d from the leading edge of the

contact. The non-uniform temperature profile will influence

the shape of the rubber surface profile after run-in.

Finally, let us present some calculated results for the

temperature field which cannot be measured using our

present experimental set-up. Figure 19 shows the rubber

macroasperity temperature (red lines) and the average rubber

surface temperature (blue lines) as a function of sliding speed,

after sliding the distance s = 1 m. Results are shown for

d = 5 cm and d = 0.1 cm.

Figure 20 shows the temperature (at d = 1 cm) as a

function of the distance from the surface in a macroasperity

contact region for different sliding speeds. Note that at the

lowest sliding speed the temperature is nearly constant and

close to the initial rubber and road temperature (20 ◦C). At

the highest sliding speed the sliding time s/v is rather short

and the heat diffusion length l ≈ (Ds/v)1/2 so short that the

temperature at z ≈ 1 mm is nearly the same as the initial rubber

(and road) temperature (20 ◦C). However, for v = 43 mm s−1

the temperature profile extends deeper into the rubber block

and T ≈ 25 ◦C at z ≈ 1 mm.
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������ 18. The average temperature on the road surface within the
‘area of interest’ at the trailing edge of the rubber-road contact area
(see figure 10� �� � �������� �� � � ��¡¢�£ �� £�¤��������¥ ¦ � £��
line is for sliding along the x-axis and the blue line along the y-axis
(see figure 17�¥ §��� � ��� �£� � � �£������ ����¨������ ©��¡�� �
factor of 30). For compound A′, B′ and C′.

6. Summary

We have derived equations which describe the frictional

heating for arbitrary (non-uniform) motion and taking into

account that some of the frictional energy is produced inside

the rubber due to the internal friction in rubber. The heat

energy transfer at the sliding interface is described by a heat

transfer coefficient α which can be measured experimentally

and calculated theoretically. The theory is valid for solids with

arbitrary thermal properties and sliding conditions. We have

presented numerical results for the space and time variation of

the temperature distribution during sliding of a rubber block

on a road surface. In a typical case, after sliding a distance

of order ∼1 m s−1 the temperature at the road-rubber interface

changes very slowly, i.e. a quasi-stationary state prevails.

We have developed a new friction tester and performed

experiments where a rubber block is slid on an asphalt road

track. Using an infrared camera we have measured the
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������ 19. The rubber macroasperity (surface) temperature (red
lines) and the average rubber surface temperature (blue lines) as a
function of sliding speed, after sliding the distance s = 1 m. Results
are shown for d = 5 cm and d = 0.1 cm. For the nominal contact
pressure p = 0.065 MPa and road and rubber initial temperature
T0R = T0S = 20 ◦C.
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������ 20. The temperature (at d = 1 cm) as a function of the
distance from the surface in a macroasperity contact region at
different sliding speeds. For the nominal contact pressure
p = 0.065 MPa and road and rubber initial temperatures
T0R = T0S = 20 ◦C.

temperature distribution on the road surface at the trailing edge

of the rubber-road contact. The measured temperature increase

is consistent with the theory predictions.
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Appendix A. Kinetic thermal interaction between hot

spots

The time variation in the background temperature is due to the

accumulated (or cumulative) effect of the flash temperature.
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In the study in section 3.2 we did not take into account that the

(laterally smeared out) hot track flash temperature field will

broaden in the z-direction due to thermal diffusion. To study

this effect let us divide the sliding distance s = vt into N equal

segments: s = N1s = Nv1t . We can then write (36) as

T0q(t) =
N

∑

n=1

1T0q(tn),

where

1T0q(tn) = 1Q

∫ ∞

0

dp f (p, tn)M(p, q)

+1Qf (tn)N(q), º»¼½
where 1Q = 2(Am/A0)(21s/πR) = Q/N . In the equation

above 1T0q(tn) is the contribution to the temperature at

time t from the flash temperature created during the sliding

interval 1s = v1t . In the study above this temperature

contribution was assumed to have the same z-variation as the

flash temperature, i.e. the thermal diffusion was neglected.

However, in reality during the time from tn = n1t to t = N1t

the temperature profile will broaden. Thus we need to replace

1T0q(tn) with 1T0q(t, tn). We will neglect the variation of the

friction coefficient with time which implies that 1T0q(t, tn)

only depends on t − tn so we can write it as 1T0q(t − tn).

In the limit N → ∞ we can consider n as a continuous

variable and write

T0q(t) =
∫ N

0

dn 1T0q(t − tn).

Writing tn = n1t = t ′ we get

T0q(t) =
1

1t

∫ t

0

dt ′ 1T0q(t − t ′) =
1

t

∫ t

0

dt ′ N1T0q(t − t ′)

=
1

t

∫ t

0

dt ′ N1T0q(t
′) =

1

t

∫ t

0

dt ′ TNq(t
′), (A2)

where TNq = N1T0q . Note that T0q(0) = TNq(0).

We will now show how the thermal broadening of

the background temperature profile can be included in an

approximate way. Let T0(z, t) be defined so that

TNq(t) =
∫ ∞

0
dz T0(z, t)e

−2qz

∫ ∞
0

dz e−2qz
. (A3)

Thus T0(z, t) is the temperature distribution at time t arising

from the flash temperature generated in the time interval 1t at

t = 0, times the factor N = t/1t .

In the contact area outside of the macroasperity contact

regions the temperature T0(z, t) evolves with time as:

T0(z, t) =
1

(4πDt)1/2

∫ ∞

0

dz′ T0(z
′, 0)

×
[

exp

(

−
(z − z′)2

4Dt

)

+ exp

(

−
(z + z′)2

4Dt

)]

.

Note that from this equation we get

∫ ∞

0

dz T0(z, t) =
∫ ∞

0

dz T0(z, 0),

so the thermal energy is conserved as must be the case.

We can obtain an approximate expression for T0q(t) as

follows. For z < lth, where the thermal (diffusion) length

lth = (4Dt)1/2, we have

T0(z, t) ≈
1

(4πDt)1/2

∫ lth

0

dz′ T0(z
′, 0)(1 + 1)

≈
2

(4πDt)1/2

∫ ∞

0

dz′ T0(z
′, 0)e−z′/lth , (A4)

while for z > lth

T0(z, t) ≈ T0(z, 0). (A5)

If we introduce

qth = (2lth)
−1,

we can also write (A4) as

T0(z, t) ≈
2

(4πDt)1/2

∫ ∞

0

dz′ T0(z
′, 0)e−2qthz

′

=
2

(4πDt)1/2

1

2qth

T0qth
(0) =

2
√

π
T0qth

(0). º»¾½
Note in particular that the temperature at the surface z = 0 is

T0(0, t) =
2

√
π

T0qth
(0),

which depends on time only via qth = (2lth)
−1 = (Dt)−1/2/4.

Let us now calculate TNq(t). Using (A3), (A5) and (A6)

gives

TNq(t) = 2q

∫ ∞

0

dz T0(z, t)e
−2qz

≈ 2q

∫ lth

0

dze−2qz 2
√

π
T0qth

(0) + 2q

∫ ∞

lth

dz T0(z, 0)e−2qz

=
(

1 − e−q/qth
) 2

√
π

T0qth
(0) + 2q

∫ ∞

0

dz T0(z, 0)e−2qz

−2q

∫ lth

0

dz T0(z, 0)e−2qz. º»¿½
The last integral in (A7) can be calculated approximately as

follows:

2q

∫ lth

0

dz T0(z, 0)e−2qz ≈
2q

2(q + qth)
2(q + qth)

×
∫ ∞

0

dz T0(z, 0)e−2qthze−2qz =
q

q + qth

T0,q+qth
(0).

Thus we get

TNq(t) ≈
(

1 − e−q/qth
) 2

√
π

T0qth
(0)

+T0q(0) −
q

q + qth

T0,q+qth
(0). º»À½

Note that as t → 0 the left hand side in (A8) approaches

T0q(0) while the right hand side approaches (2/
√

π)T0q(0).

Hence we must replace 2/
√

π with unity in order to get this

limiting case correct. The same result follows from energy

conservation (see below). Thus we get

TNq(t) ≈
(

1 − e−q/qth
)

T0qth
(0) + T0q(0)

−
q

q + qth

T0,q+qth
(0). º»Á½

14
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Note that as t → 0 then qth → ∞ and (A9) gives TNq(0) =
T0q(0) so (A9) in this limit is exact. Similarly, as t → ∞ then

qth → 0 and (A9) gives TNq(t) → T0qth
(0) = 0 since T0q = 0

for q = 0, which is also exact as for an infinite body, after an

infinite time the originally localized temperature profile at the

surface of the solid will give vanishing temperature increase

everywhere in the solid. Energy conservation requires that

∫ ∞

0

dz T0(z, t) = limq→0

TNq(t)

2q

is time independent. From (A9) we get TNq(t) → T0q(0) as

q → 0, which is independent of time. Note that if the factor

2/
√

π would appear in (A9) then the energy conservation law

would be violated.

We will now calculate T0q(t) using (A2):

T0q(t) =
1

t

∫ t

0

dt ′ TNq(t
′)

Consider first the integral

1

t

∫ t

0

dt ′ f (q, qth(t
′))

where qth(t
′) = 1/[4

√
(Dt ′)]. Changing integration variable

to q ′ = 1/[4
√

(Dt ′)] we get

1

t

∫ ∞

qth

dq ′ 1

8D(q ′)3
f (q, q ′) =

∫ ∞

qth

dq ′ 2

q ′

(

qth

q ′

)2

f (q, q ′)

where qth = qth(t) = 1/[4
√

(Dt)]. Writing q ′ = qthξ this

integral can be written as

∫ ∞

1

dξ
2

ξ 3
f (q, qthξ)

If we apply this result to the first term in (A8) it becomes

∫ ∞

1

dξ
2

ξ 3

(

1 − e−q/(qthξ)
)

T0,qthξ (0)

Similarly the last term in (A8) becomes

∫ ∞

1

dξ
2

ξ 3

q

q + qthξ
T0,q+qthξ (0)

The middle term in (A8) is time independent and

unchanged. Thus we obtain from (A8):

T0q(t) ≈
∫ ∞

1

dξ
2

ξ 3

(

1 − e−q/(qthξ)
)

T0,qthξ (0) + T0q(0)

−
∫ ∞

1

dξ
2

ξ 3

q

q + qthξ
T0,q+qthξ (0) º»¼Â½

Note that when qth/q << 1 we can expand
∫ ∞

1

dξ
2

ξ 3

q

q + qthξ
T0,q+qthξ (0)

≈
∫ ∞

1

dξ
2

ξ 3

(

1 −
qthξ

q

) (

T0q +
qthξ

q

dT0q

dq

)

≈ T0q − 2
qth

q

(

T0q − q
dT0q

dq

)

When qth/q >> 1 we get

T0q(t) ≈ 2q

∫ ∞

1

dξ
1

ξ 4

1

qth

T0,qthξ (0) + T0q(0)

−2q

∫ ∞

1

dξ
1

ξ 4

1

qth

T0,qthξ (0) = T0q(0)

so T0q(t) is time independent reflecting energy conservation.

In (A10)

T0q(0) = Q

∫ ∞

0

dp f (p, t)M(p, q) + Qf (t)N(q)

and the temperature in the macroasperity contact regions:

Tq = T0R + T0q(t) +

∫ ∞

0

dp f (p, t)M(p, q) + f (t)N(q)

º»¼¼½
In this equation

f =
2µcontσ0v

ρCp

A0

Am

−
2α

ρCp

(TR − TS) = f0 − ǫ(TR − TS)

(A12)

The rubber surface temperature in the macroasperity contact

regions is given by (A11) for q = qa:

TR = T0R +

∫ ∞

1

dξ
2

ξ 3
T0,qthξ (0) +

∫ ∞

0

dp f (p, t)M(p, qa)

+f (t)N(qa) = T0R +

∫ ∞

1

dξ
2

ξ 3

×
[

Q

∫ ∞

0

dp f (p, t)M(p, qthξ) + Qf (t)N(qthξ)

]

+

∫ ∞

0

dp f (p, t)M(p, qa) + f (t)N(qa)

= T0R +

∫ ∞

0

dp f (p, t)

×
[

Q

∫ ∞

1

dξ
2

ξ 3
M(p, qthξ) + M(p, qa)

]

+f (t)

[

Q

∫ ∞

1

dξ
2

ξ 3
N(qthξ) + N(qa)

]

º»¼Ã½
If we write this equation as

TR = T0R + 1Tvisc + f S,

we get using (A12):

TR = T0R + 1Tvisc + [f0 − ǫ(TR − TS)]S,

or

TR =
T0R + 1Tvisc + 1Tcon + γ TS

1 + γ
,

where

γ = ǫS =
2α

ρCp

[

Q

∫ ∞

1

dξ
2

ξ 3
N(qthξ) + N(qa)

]

,

1Tcon = f0S =
2µcontσ0v

ρCp

A0

Am

×
[

Q

∫ ∞

1

dξ
2

ξ 3
N(qthξ) + N(qa)

]

,

ÄÅ
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and

1Tvisc =
∫ ∞

0

dp f (p, t)

×
[

Q

∫ ∞

1

dξ
2

ξ 3
M(p, qthξ) + M(p, qa)

]

,

where

M(p, q) =
2R

v

∫ 1

0

dw
qh(w)

q + p + qp[4πD(2R/v)w]1/2
,

and

N(q) =
2R

v

∫ 1

0

dw
qqah(w)

q + qa + qqa[4πD(2R/v)w]1/2
.

We can also write

1Tvisc =
∫ ∞

0

dp f (p, t)
2R

v

×
[ ∫ 1

0

dw
q1h(w)

q1 + p + q1p[4πD(2R/v)w]1/2

+Q

∫ ∞

1

dξ
2

ξ 3

×
∫ 1

0

dw
qthξh(w)

qthξ + p + qthξp[4πD(2R/v)w]1/2

]

,

(A14)

1Tcont =
2µcont(t)σ0v

ρCp

A0

Am

2R

v

×
[ ∫ 1

0

dw
qah(w)

2 + qa[4πD(2R/v)w]1/2
+ Q

∫ ∞

1

dξ
2

ξ 3

×
∫ 1

0

dw
qaqthξh(w)

qa + qthξ + qaqthξ [4πD(2R/v)w]1/2

]

,

(A15)

and

γ =
2α

ρCp

2R

v

[ ∫ 1

0

dw
qah(w)

2 + qa[4πD(2R/v)w]1/2

+Q

∫ ∞

1

dξ
2

ξ 3

×
∫ 1

0

dw
qaqthξh(w)

qa + qthξ + qaqthξ [4πD(2R/v)w]1/2

]

.

(A16)
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