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We study the distribution of interfacial separations at the contact region between two

elastic solids with randomly rough surfaces. An analytical expression is derived for the

distribution of interfacial separations using Persson’s theory of contact mechanics, and

is compared to numerical solutions obtained using (a) a half-space method based on the

Boussinesq equation, (b) Green’s function molecular dynamics technique and (c) smart-

block classical molecular dynamics. Overall, we find good agreement between all the

different approaches.

& 2011 Elsevier Ltd. All rights reserved.
1. Introduction

Modeling the contact mechanics between elastic solids with surfaces that are rough on multiple length scales is a
challenging task. To perform such a task several theoretical approaches have been developed over the years. At the core of
all the approaches lie approximations that relate to describing the shape of the contacting surfaces. In a seminal paper,
Greenwood and Williamson (1966) (GW) proposed that the contact problem between two elastic rough surfaces could be
reduced to the problem of one infinitely hard rough surface acting on a flat elastic counterface. Within their model, the
rough topography was described by a large collection of hemispherical asperities of uniform radius (which individually
satisfied the Hertzian approximation) with a height distribution that followed a Gaussian law. This initial approach
was later extended by Greenwood and Tripp (1970) by considering the presence of roughness on the two contacting
surfaces. Further contributions to the original GW methodology have been proposed by Whitehouse and Archard (1970),
Nayak (1971), Onions and Archard (1973), Bush et al. (1975, 1979) and Whitehouse and Phillips (1978, 1982). All these
models rely on the definition of ‘‘asperity’’. The asperity concept itself has proved quite controversial and depends on the
resolution of the instrument used to measure the surface profile (Poon and Bhushan, 1995). Another drawback of GW-type
approaches is that using only a few parameters to describe the surfaces generates a one-to-many mapping possibilities,
i.e., the same set of parameters can be deduced for surfaces obtained by completely different machining processes.
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In spite of the great increase in computing power in the past decade, analytical theories are still very much needed to
understand the contact mechanics of solids with surfaces that display roughness on more than three decades in length
scales. Theoretical models to tackle such problems rely on approximations and idealizations in order to analytically solve
the equations of elasticity. For example, such equations can be exactly solved for the contact problem of a parabolic tip
acting on a flat surface under the assumptions of linearly elastic, frictionless materials (Hertz model). Similarly, an exact
solution can be obtained for the contact between a sinusoidal elastic surface and a rigid plane (Westergaard, 1939 model).
The GW model and its extensions are further examples of how to deal with surface roughness in contact mechanics,
resulting in simple analytic formulas. These easy-to-handle formulas have proved to be of great importance, and are
frequently employed in the design process of new technical applications. The Hertz and the Westergaard models provide
accurate representation of the mechanics of single asperities. In addition, the GW model describes approximately the (low
squeezing-pressure) contact between surfaces exhibiting roughness on a single or a narrow distribution of length scales.
However, most real surfaces have roughness over many decades of length scales. Here, the long range elastic coupling
between the asperity contact regions, which is neglected in the GW model, is now known to strongly influence contact
mechanics (Persson, 2008; Campañá et al., 2008). If an asperity is pushed downwards at a certain location, the elastic
deformation field extends a long distance away from the asperity influencing the contact involving other asperities further
away (Persson et al., 2002). We note that the lateral coupling between contact regions is important for arbitrary small
squeezing pressure or load. The reason for this is that surfaces with roughness on many length scales can be considered as
consisting of large asperities populated by smaller asperities, with the smaller asperities being populated by even smaller
asperities and so on. Thus, when two solids are squeezed together by a very small external force, the distance between the
macro-asperity contact regions will be very large, and one may be tempted to neglect the elastic coupling between the
macro-asperity contact regions. However, the separation between the micro-asperity contact regions within a macro-
asperity region will in general be very small, and one cannot neglect the elastic coupling between such micro-asperity
contact regions. This latter effect is neglected in the GW theory, significantly limiting its prediction capabilities when
applied to most real surfaces. Additionally, in the GW model the asperity contact regions are assumed to be circular (or
elliptical) while the actual contact regions (at high enough experimental resolution) show fractal-like boundary lines
(Borri-Brunetto et al., 2001; Pei et al., 2005; Persson and Yang, 2008). Therefore, because of their complex geometries, one
should try to avoid explicitly invoking the nature of the contact regions when searching for an analytical methodology to
solve the contact problem of two elastic rough surfaces.

Recently, an analytical contact mechanics model that does not use the asperity concept and becomes exact in the limit
of complete contact has been developed by Persson (2001, 2006, 2007), Yang and Persson (2008), and Persson and Yang
(2008). The theory accounts for surface roughness on all relevant length scales and includes (in an approximate way) the
long range elastic coupling between asperity contact regions. In this theory the information about the surface enters via
the surface roughness power spectrum C(q), which depends on all the surface roughness wavevectors q components. The
theory can be used to calculate the interfacial stress distribution Pðs,zÞ, from which one can obtain the area of real contact
as a function of the squeezing pressure p and the magnification z. Furthermore, the theory predicts the average interfacial
separation u for any applied external load.

Besides analytical approaches, numerical algorithms (deterministic) have also been developed to understand the
contact mechanics of elastic solids with rough boundaries. As the speed and memory capacity of computers increase,
numerical methods have become a viable alternative to analytical methods when modeling surfaces of three-dimensional
(3D) solids having surface roughness extending over at most three decades in length scales. Nevertheless, simplifying
assumptions about the material and the topography are still needed to ensure reasonable computational time windows.
Much is still to be done in order to reach the capacity to numerically simulate real surfaces that may have roughness from
the nanometer scale up to the macroscopic size of the system which could be cm.

Numerous numerical works have been reported in the literature aiming to solve the contact mechanics of two linear
elastic solids with rough surfaces. The majority of these are half-space models in which the elastic deformation is related
to the stress field at the surfaces of the solids through integral equations where the domain of integration is the boundary
of the half-space. This type of approach is commonly referred to as boundary element method (BEM). Twenty years ago
Lubrecht and Ioannides (1991) suggested applying multilevel techniques to facilitate the numerical solution of the BEM.
With the same objective in mind Ren and Lee (1994) implemented a moving grid method to reduce storage of the
influence matrix when the conventional matrix inversion approach is used to solve this type of problem. Andersson and
Björklund (1994) extended the conventional matrix inversion approach by incorporating friction induced deformations.
Alternative techniques that aim to solve the elastic contact of rough surfaces are the fast Fourier transform (FFT)-based
method introduced by Ju and Farris (1996) and a follow-up extension, based on a variational principle (Kalker, 1977),
proposed by Stanley and Kato (1997). The contact between solids with realistic surface topographies under relatively small
loads usually leads to plastic deformations. Tian and Bhushan (1996) based their theoretical model is based on a
variational principle for linear elastic perfectly plastic materials. In this way, not only the in-contact topography and the
corresponding pressure distribution but also the unloaded plastically deformed topography can be obtained for the case
when the loading is high enough to cause yield. This model was further developed in the paper by Sahlin et al. (2010) and
this is also the BEM employed in the present work, but here we restrict the analysis to linear elastic materials.

In earlier works, the prediction of Persson’s contact mechanics theory for the interfacial stress distribution PðsÞ and the
contact area have been compared to numerical results obtained using the finite element method (FEM) (Hyun et al., 2004),
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molecular dynamics (Yang and Persson, 2008) and Green’s function molecular dynamics (GFMD) (Campañá and Müser,
2007). In this paper, we will show how the theory can be extended to also predict the distribution of interfacial separations
P(u). This quantity is of crucial importance for problems like leak-rate of seals (Persson and Yang, 2008; Lorenz and
Persson, 2010a,b) or mixed lubrication (Persson, 2010; Scaraggi et al., in press; Lorenz and Persson, 2010c). The analytical
results will be compared to numerical solutions obtained using (a) a half-space method based on the Boussinesq equation
(BEM), (b) Green’s function molecular dynamics technique and (c) smart-block molecular dynamics.

2. Contact mechanics theory of Persson

Consider the frictionless contact between two elastic solids with Young’s elastic moduli E0 and E1 and Poisson ratios n0

and n1. Assume that the surfaces of the two solids have height profiles h0ðxÞ and h1ðxÞ, respectively. The elastic contact
mechanics for the solids can be mapped into that of a rigid substrate with height profile hðxÞ ¼ h0ðxÞþh1ðxÞ and a second
elastic solid with a flat surface and Young’s modulus E and Poisson ratio n chosen so that (Johnson, 1985)

1�n2

E
¼

1�n2
0

E0
þ

1�n2
1

E1
: ð1Þ

The main physical variables that characterize the contact between the solids are the stress probability distribution PðsÞ
and the distribution of interfacial separations P(u). These functions are defined as follows:

PðsÞ ¼/d½s�sðxÞ�S, PðuÞ ¼/d½u�uðxÞ�S

where dð: :Þ is the Dirac delta function, and sðxÞ and u(x) are the stress and the interfacial separation at point x¼(x,y),
respectively. The /: :S brackets denote ensemble averaging. Note that both PðsÞ and P(u) have a delta function at the origin
with its weight determined by the area of real contact i.e., given by ð1�A=A0ÞdðsÞ and ðA=A0ÞdðuÞ. Here A0 is the nominal
contact area and A the area of real contact projected on the xy-plane. Normalization conditions require thatZ

ds PðsÞ ¼ 1,

Z
du PðuÞ ¼ 1

while Z 1
0þ

ds PðsÞ ¼ A

A0
,

Z 1
0þ

du PðuÞ ¼
A0�A

A0
:

Thus from the interfacial distribution of stresses or separations one can immediately determine the area of real contact A.
The average interfacial stress (which must be equal to the applied pressure) s, and the average interfacial separation u, can
be obtained as

s ¼
Z

ds sPðsÞ, u ¼

Z
du uPðuÞ:

The stress and interfacial separation distribution functions, PðsÞ and P(u), are determined by the elastic energy Uel

stored in the asperity contact regions (see below). The elastic energy Uel is written as Persson (2002, 2006, 2008)

Uel ¼
EA0

4ð1�n2Þ

Z
d2q qCðqÞWðqÞ ð2Þ

where the surface roughness power spectrum is defined by

CðqÞ ¼
1

ð2pÞ2

Z
d2x /hðxÞhð0ÞSe�iq�x: ð3Þ

The height profile h(x) of any rough surface can be measured routinely nowadays on all relevant length scales using optical
and stylus experiments.

For complete contact W(q)¼1 rendering an exact result for the expression of the energy above. In Persson (2002) it was
argued that WðqÞ ¼ PðqÞ ¼ AðzÞ=A0 is the relative contact area when the interface is studied at the magnification z¼ q=q0

(where q0 is the small-wavevector cutoff, usually chosen as p=L, where L¼OA0 is the linear size of the surface). The
qualitative explanation for such an argument is that the solids will mainly deform in the regions where they make contact,
and most of the elastic energy will arise from the contact regions, see Fig. 1. Nevertheless, using W(q)¼P(q) assumes that
the energy (per unit area) in the asperity contact regions is just the average elastic energy (per unit area) as if complete
contact would occur. This does not take into account that the regions where no contact occurs are those regions where
most of elastic energy (per unit area) would be stored if complete contact would occur. Hence, we expect smaller stored
elastic energy (per unit area) in the asperity contact regions than obtained using W(q)¼P(q). In Yang and Persson (2008),
Persson (2008), and Campañá et al. (2011) we found that using

WðqÞ ¼ PðqÞ½gþð1�gÞP2ðqÞ� ¼ PðqÞSðp,qÞ, ð4Þ

with g� 0:45 gives good agreement between theory and numerical calculations. Note that for complete contact P(q)¼1
and hence W(q)¼1 which reduces to the exact result for the elastic energy in such a limit. On the contrary, in the limit of
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Fig. 1. An elastic block squeezed against a rigid rough substrate. The separation between the average plane of the substrate and the average plane of the

lower surface of the block is denoted by u. Elastic energy is stored in the block in the vicinity of the asperity contact regions.

Fig. 2. An elastic block (dotted area) in adhesive contact with a rigid rough substrate (dashed area). The substrate has roughness on many different

length scales and the block makes partial contact with the substrate on all length scales. When a contact area is studied, at low magnification it appears

as if complete contact occurs, but when the magnification is increased it is observed that in reality only partial contact has taken place.

magnification ζ
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u(ζ)
_
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Fig. 3. An asperity contact region observed at the magnification z. It appears that complete contact occurs in the asperity contact region, but when the

magnification is increased to the highest (atomic scale) magnification z1, it is observed that the solids are actually separated by the average distance uðzÞ.
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small contact, PðqÞ51 which yields WðqÞ � gPðqÞ. For g� 0:45 this results in an elastic energy which is a factor of 0.45
smaller than the elastic energy (per unit area) stored in the contact region in the case of complete contact. Recently, in an
independent study, Akarapu et al. (2011) found a value of g¼ 0:48 after analyzing a variety of rough surfaces in contact
with roughness down to the atomic scale, variable Poisson ratio and Hurst exponents of H¼0.5 and 0.8.

The contact mechanics formalism developed by Persson (2001, 2006, 2007) and Yang and Persson (2008) is based on
studying the interface between two contacting solids at different magnifications z. When the system is studied at the
magnification z it appears as if the contact area (projected on the xy-plane) equals AðzÞ, but when the magnification
increases, it is observed that the contact is incomplete, and the surfaces in the apparent contact area AðzÞ are in fact
separated by the average distance uðzÞ, see Figs. 2 and 3. The (apparent) relative contact area AðzÞ=A0 at the magnification z
is given by (Persson, 2001; Yang and Persson, 2008)

AðzÞ
A0
¼

1

ðpGÞ1=2

Z p0

0
ds e�s

2=4G ¼ erf
p0

2G1=2

� �
, ð5Þ

where p0 ¼ FN=A0 is the nominal squeezing pressure and

GðzÞ ¼
p
4

E

1�n2

� �2 Z zq0

q0

dq q3CðqÞSðp,qÞ: ð6Þ
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In most applications A=A051 and in this case one may use S� g. The distribution of interfacial stress is given by
(for s40):

PðsÞ ¼ 1

2ðpGÞ1=2
exp �

ðs�p0Þ
2

4G

 !
�exp �

ðsþp0Þ
2

4G

 !" #
: ð7Þ

Let us define u1ðzÞ to be the (average) height separating the surfaces which appear to come into contact when the
magnification decreases from z to z�Dz, where Dz is a small (infinitesimal) change in the magnification. u1ðzÞ is a
monotonically decreasing function of z, and can be calculated from the average interfacial separation uðzÞ and AðzÞ using
(see Yang and Persson, 2008)

u1ðzÞ ¼ uðzÞþu 0ðzÞAðzÞ=A0ðzÞ, ð8Þ

where

uðzÞ ¼Op
Z q1

zq0

dq q2CðqÞwðqÞ

Z 1
pðzÞ

dp0
1

p0
Sðp0,qÞe�½wðq,zÞp0=En �2 , ð9Þ

En ¼ E=ð1�n2Þ, pðzÞ ¼ p0A0=AðzÞ and

wðq,zÞ ¼ p
Z q

zq0

dq0 q03Cðq0Þ

� ��1=2

:

The definition of the distribution of interfacial separations PðuÞ ¼/d½u�uðxÞ�S involves an ensemble average over many
realizations of the surface roughness profile. If the surface roughness power spectra has a roll-off wavevector qc which is
much larger than q0 ¼ p=L, where L is the linear size of the surface, then performing an ensemble average is identical to
averaging over the surface area. In this case we can write the distribution of interfacial separations as

PðuÞ ¼
1

A0

Z
A0

d2x dðu�uðxÞÞ: ð10Þ

The probability distribution is normalizedZ
du PðuÞ ¼ 1: ð11Þ

In the contact mechanics theory of Yang and Persson (2008) the interface is studied at different magnification z. As the
magnification increases, new short length scale roughness can be detected, and the area of (apparent) contact AðzÞ
therefore decreases with increasing magnification. The (average) separation between the surfaces in the surface area
which (appears) to move out of contact as the magnification increases from z to zþdz, is denoted by u1ðzÞ and is predicted
by the Persson theory (see above). The contact mechanics theory of Persson does not directly predict P(u) but rather the
probability distribution of separation u1 (see Yang and Persson, 2008):

P1ðuÞ ¼
1

A0

Z z1

1
dz ½�A0ðzÞ�dðu�u1ðzÞÞ: ð12Þ

Since u1ðzÞ is already an average, the distribution function P1(u) will be more narrow than P(u), but the first moment of
both distributions coincide and is equal to the average surface separation:

u ¼

Z 1
0

du uPðuÞ ¼

Z 1
0

du uP1ðuÞ:

To derive an approximate expression for P(u) we write Eq. (10) as

PðuÞ ¼
1

A0

Z z1

1
dz½�A0ðzÞ�/dðu�uðxÞÞSz: ð13Þ

Here /: :Sz stands for averaging over the surface area which moves out of contact as the magnification increases from z to
zþdz. Note that

/uðxÞSz ¼ u1ðzÞ: ð14Þ

A surface which moves out of contact as the magnification increases from z to zþdz will have short-wavelength roughness
with wavevectors larger than q4zq0. Thus the separation between these surface areas will not be exactly u1ðzÞ, but will
fluctuate around this value. One may take this into account by using

/ðuðxÞ�u1ðzÞÞ2Sz � h2
rmsðzÞ, ð15Þ

where h2
rmsðzÞ is the mean of the square of the surface roughness amplitude including only roughness components with the

wavevector q4q0z. We can write

h2
rmsðzÞ ¼

Z
q4q0z

d2q CðqÞ, ð16Þ
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where the surface roughness power spectra C(q) can be calculated from the measured surface topography. Using the
definition

dðuÞ ¼
1

2p

Z
da eiau,

one can rewrite Eq. (13) as

P¼
1

A0

Z
dz ½�A0ðzÞ�

1

2p

Z
da /eiaðu�uðxÞÞSz ¼

1

A0

Z
dz ½�A0ðzÞ�

1

2p

Z
da eiaðu�u1ðzÞÞ/eiaðu1ðzÞÞ�uðxÞÞSz:

To second order in the cummulant expansion

P�
1

A0

Z
dz ½�A0ðzÞ�

1

2p

Z
da eiaðu�u1ðzÞÞ�a2/ðu1ðzÞ�uðxÞÞ2Sz=2,

or using Eq. (15):

P�
1

A0

Z
dz ½�A0ðzÞ�

1

ð2ph2
rmsðzÞÞ

1=2
exp �

ðu�u1ðzÞÞ2

2h2
rmsðzÞ

 !
:

The above expression does not satisfy the normalization condition equation (11). We will therefore use instead

P�
1

A0

Z
dz½�A0ðzÞ�

1

ð2ph2
rmsðzÞÞ

1=2
exp �

ðu�u1ðzÞÞ2

2h2
rmsðzÞ

 !
þexp �

ðuþu1ðzÞÞ2

2h2
rmsðzÞ

 !" #
: ð17Þ

The added term in this expression can be considered as resulting from the cummulant expansion of

1

A0

Z
A0

d2x dðuþuðxÞÞ:

Note that such a term vanishes for u40.
The theory described above predicts that for small squeezing pressures p the area of real contact is proportional to the

squeezing pressure, while the interfacial separation depends logarithmically on p. Both results are related to the fact that
when increasing p existing contact areas grow and new contact areas are formed in such a way that, in the thermodynamic
limit (infinitely large system), the interfacial stress distribution, and also the size distribution of contact spots, are
independent of the squeezing pressure as long as these distributions are normalized to the real contact area A (Persson
et al., 2005). In Lorenz and Persson (2009) (see also Lorenz et al., 2010) experimental results were presented to test the
dependence of u on p. In the study a rubber block was squeezed against an asphalt road surface, and good agreement was
found between the theory and experiments. The fact that A� p for small load is also well tested experimentally, and is
usually considered as the explanation for Coulomb’s friction law which states that the friction force is proportional to the
load or normal force.

3. Numerical methods

When two elastic solids with rough surfaces come into contact, the elastic deformations perpendicular to the
contacting plane extend into the solids a characteristic length l that could be as large as the contacting plane’s lateral size
L. Thus, in order to properly capture the mechanical response of the solids within the contact region, the elastic properties
of the material have to be considered up to a distance L in the normal direction to the contacting plane. This is why
standard algorithms that use a full representation of the system display a computational effort that scales with the
system’s size L3. Such a scaling rapidly becomes a limitation when the linear dimension of the solids increases. The
previous arguments explain why coarse-grained numerical techniques are needed when studying the contact mechanics of
solids with more than two decades in surface roughness length scales.

The theory developed in Section 2 for the distribution of interfacial separations P(u) will be compared to the predictions
of the following three different coarse-grained numerical methods: (a) a half-space method based on the Boussinesq
equation (BEM), (b) Green’s function molecular dynamics technique (GFMD) and (c) smart-block classical molecular
dynamics (MD). For this, we have considered the contact between an elastic block with a flat bottom surface and a
randomly rough rigid substrate. Self-affine fractal topographies with Hurst exponent values of H¼0.3, 0.5 and 0.8
(corresponding to the fractal dimension Df ¼ 3�H¼ 2:7, 2.5 and 2.2) are used to model the rigid substrate. Fig. 4 shows the
surface topography h(x) and the power spectrum C(q) (on a log–log scale) of one of our surfaces with H¼0.3, hard cutoff
qc¼64 (in units of 2p=L, where L is the linear size of the simulation cell) and rms-slope � 0:03.

Randomly rough substrate profiles were generated on a two-dimensional square grid with 2048�2048 mesh
points. The surface heights were obtained via a Fourier Filtering Algorithm. In the case of the GFMD and BEM
methods the elastic interactions within the original elastic block are chosen such that both Lame coefficients satisfy
l¼ m¼ 1. This choice of the coefficients results in a Young modulus of E¼5/2, a bulk modulus of K¼5/3 and a Poisson ratio
of n¼ 1=4.
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Fig. 4. Graphical representation of a rough topography with Hurst exponent H¼0.3 and its corresponding height–height correlation function
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the height–height correlation function of such a surface.
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In the smart-block molecular dynamics simulations we used a smaller system size than in the other two numerical
schemes. The surfaces were obtained by choosing every 4th grid point from the original surfaces with 2048�2048
resolution. This procedure yielded surfaces with Nx � Ny ¼ 512� 512 mesh points. Since the original surfaces were quite
smooth at short length scales (see the power spectrum in Fig. 4) the surfaces used in the smart-block MD simulations are
expected to give the same contact mechanics as the original topographies. This was confirmed by comparing the MD
results obtained for the 512�512 system sizes to those of the BEM method for the equivalent 2048�2048 systems. In our
MD simulations the atoms in the bottom layer of the block are located on a simple square lattice with lattice constant
a¼2.6 Å. The lateral dimensions of the block and substrate are Lx ¼ Ly ¼Nxa¼ 1331:2 Å. The Young modulus of the block is
E¼250 GPa and its Poisson ratio n¼ 1=4 identical to that of the other two schemes. Since no natural length scale exists in
elastic continuum mechanics, one can directly compare the results of the smart-block MD model to those of the methods
(a) and (b) by simply using a distance scaling factor of (512/2048)a¼0.65 Å, and a pressure (or stress) scaling factor of
250/2.5¼100 GPa.

Next, we will provide a short technical review of the three numerical methods that we have employed in this work.
3.1. Boundary element method

Any contact mechanics problem can be solved by using a technique that minimizes the total potential energy of the
system. Assuming frictionless linear elastic contact, the variational problem including constraints to be solved can be
expressed as (see, e.g., Kalker, 1977; Tian and Bhushan, 1996; Sahlin et al., 2010):

min
pZ0

1

2

Z
A

d2x pðxÞuzðxÞ�
Z

A
d2x pðxÞun

z ðxÞ

� �
, ð18Þ

where p(x) is the pressure distribution, uzðxÞ is the associated elastic deformation and un
z ðxÞ is the prescribed surface

displacements, equivalent to the roughness height coordinate (h) plus a constant controlling the prescribed shift. The first
term describes the internal complementary energy due to elastic deflection, and the second term governs the contribution
from the prescribed displacement un

z ðxÞ. Note that uðxÞ ¼ uzðxÞ�un
z ðxÞ. The Boussinesq relation between pressure and elastic

deformation employed for this work may be formulated as

uzðxÞ ¼
1�n2

pE

Z
d2x0

pðx0Þ

9x�x09
: ð19Þ

For the BEM method employed here, the complete system of equations consists of Eqs. (18) and (19), and the force balance
relationZ

A
d2x pðxÞ ¼ FN, pðxÞZ0, ð20Þ

where FN is the normal force or the applied load.
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Numerically, the solution is achieved by employing the method outlined by Sahlin et al. (2010), where the FFT
algorithm is utilized to accelerate the computation of the elastic deflection. For the numerical results presented in this
work, convergence of the solution process is reached when the following two convergence criteria are met:
�
 The force balance criterion that controls that the load generated by the contact pressure supports the applied load.

1

FN
FN�

Z
A

d2x pðxÞ

����
����o10�3:
�
 A geometric criterion that controls that points ‘in-contact’ lie sufficiently close to the contact plane.

maxx2A9uzðxÞ�un
z ðxÞ9

maxx2A0
hðxÞ�minx2A0

hðxÞ
o10�5:

3.2. Green’s function molecular dynamics

Green’s function molecular dynamics (GFMD) (Campañá and Müser, 2006) is among the many simulation techniques
available to find the equilibrium configuration of a mechanical system under the action of external loads (Saito, 2004). To
achieve its goal GFMD solves the system’s equations of motion for a set of initial/boundary conditions.

In the harmonic approximation, the potential energy of a linear elastic solid is given by

V ¼
1

2

X
ij

X
ab

kabij uiaujb ¼
1

2

X
ij

ui � Kij � uj, ð21Þ

where ui ¼
P

auiaea (e1 ¼ x̂, e2 ¼ ŷ and e3 ¼ ẑ are orthogonal unit base vectors) is the deformation field at locations xi, and
Kij ¼

P
abkabij eaeb the force constant matrix. In thermal equilibrium, the ui displacements will comply with the Boltzmann

statistics with second moments given by

/uiujS¼
1

Z

Z
du1 � � � duNui,uje

�bV ¼ kBT½K�1�ij, ð22Þ

with Z being the partition function. The equation above shows that one can obtain the force constant matrix ½K�1�ij from
measuring the fluctuations in the second moments /uiujS. Furthermore, if the bottom surface of the solid is exposed to an
external force field FextðfugÞ, all the degrees of freedom ui that do not belong to the bottom surface can be integrated out
(eliminated) yielding an equivalent problem for the bottom surface

V ¼
Xsurface

ij

1

2
ui �

~K ij � uj�
Xsurface

i

FðiÞext � ui ð23Þ

where ~K ij are new renormalized force constants. Renormalization takes place such that the new 2D surface obtained will
deform under the action of the external field in exactly the same way as the bottom surface of our original 3D-solid. The
matrix

½G�ij ¼ ½
~K
�1
�ij ¼

/uiujS
kBT

is known as the Greens’ function of the system. From Eq. (23) one obtains the equilibrium conditionX
j

~K ij � uj ¼ FðiÞext: ð24Þ

If the system is periodic in the (x, y)-plane (translational symmetry) one can use the Fourier transform to obtain
decoupling of the modes in the q¼ ðqx,qyÞ-space as

~uðqÞ ¼ ~GðqÞ ~FextðqÞ: ð25Þ

Eq. (25) eliminates the non-local nature of the real-space solution of Eq. (24) while rendering an easily parallelizable
scheme that can be used to simulate the contact mechanics of large systems. For a given interaction kernel ~GðqÞ, it is the
implementation of Eq. (25) in a molecular dynamics fashion that lies at the core of GFMD.

Our GFMD implementation followed the approach described in previous works (Campañá and Müser, 2007; Campañá
et al., 2008) where all the roughness is placed on the rigid substrate and the elasticity on a flat GFMD block. The
interactions between the block and the rough substrate are modeled via a hard-wall potential. If the z-coordinate of an
atom within the elastic block at location x¼(x,y) crosses through h(x), the corresponding interaction energy increases from
zero to infinity. To obtain the value of the surface height h(x) inside any square element of the grid, we employed
interpolation via bi-cubic splines with zero partial and cross-derivatives at the corner grid points of each element.

Defining which block’s atoms are in contact after equilibrium has been reached is done by analyzing the pressure
distribution. In a fully equilibrated simulation, a wide pressure gap of several orders of magnitude would exist between the
atoms that belong to the contact region and those which do not. This approach to defining the contacting status of a certain
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atom differs from geometrical ones where contact is defined by comparing the relative distance between the block’s atom
and the corresponding surface height at the local atomic position, as it is done within the BEM method.

3.3. Smart-block molecular dynamics

The smart-block molecular dynamics (MD) is a coarse-grained technique which allows to drastically accelerate
computations of a contact mechanics problem by reducing the number of dynamical variables without significant loss of
accuracy (Yang et al., 2006). As already mentioned in the opening of Section 3, to properly capture the deformation field
perpendicular to the contact plane, the normal length of the elastic block Lz must be as large as the wavelength associated
to the roll-off wavevector of the surface roughness power spectrum l0. For large values of l0 a full atomistic description of
the system may be unfeasible. Yet, it is well known that elastic deformations resulting from interfactial roughness on a
certain wavelength l will decay over a distance l into the solid, while spatially varying over a typical length scale l. Thus,
for large values of l, a full atomistic description of the solid along the z-direction is not required. Instead one can coarse-
grain the solid by replacing groups of atoms with bigger ‘‘super-atoms’’. If there are N�N atoms in the nominal contact
area, only n� ln N ‘‘super-atomic’’ layers are needed in the z-direction. The number of atoms in each layer decreases in a
geometric progression every time the coarse graining procedure is applied, so that the total number of particles within the
smart-block approach is of order N2 instead of N3 as expected for the fully atomistic description.

In the original implementation (Yang et al., 2006) smart-block atoms are placed on the sites of a simple cubic lattice,
and coupled with springs to their nearest neighbors. Full resolution down to the atomic level is maintained at the interface.
The coarse graining is applied to the upper layers starting from the third one from the bottom (first) layer, and it involves
merging together a box made of mx �my �mz particles. The three integers mx, my and mz are called merging factors along
the three axes. The equilibrium position of each new ‘‘super-particle’’ is in the center of mass of the group of particles
merged together. Its mass is mxmymz times the mass of the original particles, so that the density does not change. Along
the direction of merging the new spring constants for elongation and bending are redefined to guarantee identical elastic
response to the original fully atomistic block.

The complete model encompasses an elastic smart-block (or simply block for brevity) interacting with a rigid randomly
rough substrate. The substrate and the bottom layer of the block consist of an array of 512�512 atoms. Periodic boundary
conditions are applied in the xy-plane. The atoms in the bottom layer of the block form a simple square lattice with lattice
constant a¼2.6 Å. The mass of a block atom is 197 amu, and its elastic parameters have already been mentioned at the
beginning of this section. Smart-block thickness is chosen to be 1350.7 Å, which is slightly larger than its lateral
dimension. It consists of 12 atomic layers, and merging factors of 2 (in all 3 directions) are used for all layers, except the
6th and the 11th. The block contains 615 780 atoms, and the total number of atoms involved in the simulations is 877 924.

The atoms at the block-substrate interface interact via a repulsive potential UðrÞ ¼ 4eðr0=rÞ12, where r is the interatomic
distance and the parameter e corresponds to the binding energy between two atoms at the separation r¼ 21=6r0. In our
calculations we have used the values r0 ¼ 3:28 Å and e¼ 18:6 meV. Zero temperature is maintained during the simulations
using a Langevin thermostat (Griebel et al., 2007) which allows to exclude the influence of the thermal noise on the results,
and the equations of motion have been integrated using Verlet’s method (Griebel et al., 2007; Rapaport, 2004) with a time
step of Dt¼ 1 fs.

In the present study the squeezing process proceeds as follows. The upper surface of the smart-block is moved towards
the substrate at a constant velocity of v¼5 m/s with the block being compressed as its bottom layer approaches the
substrate. This value of the velocity is low enough to provide the quasistatic conditions necessary for our problem. The
duration of simulations depends on the type of substrate and they last until a small enough separation between the bottom
block layer and the substrate is achieved. Note that the thickness of the smart-block may influence the results. In particular, a
too thin smart-block leads to noisy data with considerable deviation from the results of the other methods. Increasing the
thickness of the smart-block beyond the lateral size of the surface ensures convergence in the results. One must add that the
time dependencies of p and u are not monotonic, and some oscillations are observed, which may be attributed to elastic
waves propagating in the block during its compression. Lowering the velocity of movement down to 2.5 m/s leads to a
decrease in the amplitude of these oscillations. Moreover, the large u region in the dependence of pressure on u gets closer to
the BEM results when a lower value of v is employed. This suggests that smaller values of v should be used in future studies.

4. Results and discussion

We first consider the dependency pðuÞ of the pressure p on the average interfacial separation u. Fig. 5 shows pðuÞ

obtained using the analytical theory (black lines), the BEM (blue symbols), GFMD (green symbols) and the smart-block MD
approach (red lines). The figure includes results for surfaces with Hurst exponents of H¼0.3, 0.5 and 0.8. Note that the
analytical theory has been developed for infinite systems, which will have infinitely high asperities, therefore always
leading to a certain degree of contact between the solids. The small systems’ sizes utilized in the numerical simulations
resulted in the highest asperities exceeding by only a factor of three (above the average plane) the root-mean-square
roughness of the surfaces. This explains the sharp drop in the pressure in the computer simulation curves at the height
threshold value established by the tallest asperity.
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In the smart-block MD simulations, the finite range of the interaction potential between the block atoms and the
surface atoms resulted in a non-unique way of defining u. In the current work, to obtain u a small contribution du of about
4 Å has been subtracted from the difference z1�z0 in the average position of the interfacial atoms of the block and the
substrate. How to find the best du is a rather difficult question, and several alternative ways exist to accomplish such a
goal. Here we have used that in the continuum limit the P(u) distribution must display a maximum (delta-like behaviour)
at its origin. In smart-block simulations the maximum in P(u) gets shifted to a non-zero surface separation due to the finite
range of the interaction potential. This behavior is shown in Fig. 6 for two different external pressure values. Thus, shifting
the MD probability distribution P(u) towards the origin by du is necessary in order to be able to compare with the GFMD
and BEM continuum mechanics results.

Persson’s contact mechanics theory predicts that the average interfacial separation in the large u range is related to the
applied pressure p via p� expð�u=u0Þ, where u0 is of order of the root-mean-square roughness of the undeformed rough
surface. This result, already confirmed by experimental works (Lorenz and Persson, 2009; Lorenz et al., 2010), differs
drastically from the prediction of GW-like asperity models which instead yield a dependency of the type p� expð�bu2

Þ

with b being a constant. The origin for those differences, an exponential decay predicted by Persson’s theory and a
Gaussian decay obtained by GW, is the omission of the long-range elastic deformations within asperity contact models
which also results in very different morphologies for the contact regions as illustrated in Figs. 7 and 8.

Fig. 7 shows the contact morphology generated for a H¼0.8 rough surface at three different external pressures,
p¼0.0032E, 0.008E, 0.012E, when the long-range elastic deformations are taken into account. In Fig. 8 we show the
morphologies obtained (for identical values of the ‘‘true’’ contact area A) when a bearing area model is utilized. The lack of
long-range elastic coupling in the latter model produces qualitatively different contact morphologies (compare Figs. 7 and 8).
Thus, when elastic deformations are considered, the contact regions become less compacted, with fractal-like boundaries,
and are distributed over a larger fraction of the nominal contact area than those predicted by the asperity model in Fig. 8.

A first comparison between the probability distribution P(u) of interfacial separations u obtained using the BEM, smart-
block MD and GFMD methodologies at the squeezing pressures p¼0.79, 0.78 and 0.75 GPa, respectively, is displayed in
Fig. 9. The reason for different squeezing pressures resorts in the different type of numerical solution techniques connected
to the different models. As shown, slight changes in applied pressure did not vary significantly the general shape of P(u).
This is indicative of the individual consistency in the implementation of each numerical technique. Further comparison of
the numerical methods to the theoretical predictions is included in Fig. 10 in the limit of (a) non-contact, (b) low-pressure
region and (c) medium-to-high pressure region. The red lines correspond to the predictions of Persson’s contact mechanics
theory (Eq. (17)) while the blue lines have been obtained from GFMD (in (b)) and BEM ((a) and (c)). All the numerical
results correspond to a single realization of the rough surface which explains the rather large fluctuations (noise) in the
P(u) data. In particular, the ensemble averaged P(u) for the non-contact case (zero squeezing pressure, p¼0) must follow a
Gaussian law as given by the theory curve. However, the lack of a small wavevector roll-off (or cutoff) in the surface
roughness power spectra implied that numerous independent topographies would have to be considered in order to



Fig. 7. Contact morphologies for the H¼0.8 surface at three different contact pressures; (a) p¼0.0032E, (b) p¼0.0080E and (c) p¼0.0120E when long-

range elastic deformations are considered. The fractional contact areas are A/A0¼0.066, 0.161 and 0.238, respectively.

Fig. 8. Contact morphologies predicted by a bearing area model for the same ‘‘true’’ contact area A values as in Fig. 7 but where long-range elastic

coupling has been neglected. (a) A/A0¼0.066. (b) A/A0¼0.161. (c) A/A0¼0.238.
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achieve averages that closely represent the thermodynamic limit. Due to the large computational effort involved in such
a task no further attempt to improve our statistics was performed.

As already mentioned in the methods section, the original contact mechanics theory of Persson does not directly predict
P(u) but instead P1(u) (distribution of boundary-line averaged interfacial separations) which is a much sharper function
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than the interfacial separation distribution. The individual behaviour of both functions for the H¼0.8 surface at a
squeezing pressure of p¼0.003E is plotted in Fig. 11. In the figure the analytical P(u) predicted using Eq. (17) (red curve)
and P1(u) (green line) (Eq. (12)) are compared to the numerically exact distribution generated from GFMD simulations
(blue curve). Because the bin size of the P(u) and P1(u) computations was smaller than that of the numerical GFMD study
the delta function at the origin u¼0 barely shows in the first two cases. Nevertheless, based on the results presented in
Figs. 9 and 10 we feel confident to conclude that the extension presented in this work to compute P(u) within the
framework of Persson’s original contact theory yields quite reasonable quantitative predictions when compared to
numerically exact simulations of the same contact problem.

Another physical variable of interest in contact mechanics studies is the ratio A/A0 between the real area of contact and
the nominal contact area. With the help of Persson’s theory one can derive expressions that relate A/A0 to the average
interfacial separation u. Next, the predictions from such a relation can be compared to those of numerical calculations.
Fig. 12 depicts the fractional contact ratio obtained in theoretical and numerical simulations of rough surfaces with
variable Hurst exponents over a wide pressure region. As depicted, in the low-pressure regime (large u zone) all
approaches converged to the same limit. This is further proof of the suitability of the numerical techniques discussed here
to study the contact mechanics of elastic solids with randomly rough surfaces under engineering conditions. As the
pressure and H exponent increase, discrepancies arised between GFMD and the other approaches. In future works the
cause for such discrepancies in the high pressure region must be further investigated.
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5. Summary and conclusions

The contact mechanics theory developed by Persson has been extended to allow for the calculation of the distribution of
interfacial separations P(u). The theory has been applied to study the contact mechanics of a flat elastic solid squeezed
against an infinitely hard randomly rough substrate. Three different coarse-grained numerical approaches have been used to
simulate the same problem: (a) the boundary element method (BEM), (b) Green’s function molecular dynamics (GFMD) and
(c) smart-block molecular dynamics. The theoretical predictions have been compared to those of the numerical methods.

All the numerical methods and the analytical theory gives very similar results for the pressure p and the fractional
contact area A/A0, as a function of the average interfacial separation u. In agreement with some earlier numerical studies
when find a linear proportionality between real area of contact A and the applied load at low loads, and a logarithmic
relation between the average interfacial separation and the applied pressure in the same load regime (Akarapu et al., 2011;
Campañá et al., 2011; Lorenz and Persson, 2009; Lorenz et al., 2010). We note that these functional forms are those
predicted by Persson’s theory thus pointing to the capabilities of the theory to properly account for long-range elastic
deformations.
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The distribution of interfacial separations P(u) was studied in the low-to-medium pressure regions and our results
showed that the theory gives quantitative predictions of reasonable accuracy for P(u) when compared to the results
obtained from numerically exact calculations. However, the rather small system sizes used in the numerical calculations
resulted in finite size effects (noise) for large interfacial separations. Among the numerical schemes we note that the BEM
model, based on a FFT-accelerated implementation of the Boussinesq equation, is fast and accurate over the whole range of
squeezing pressures. The GFMD method is also computationally very fast, but its results deviated from the expected
solution for large values of the roughness exponent and high pressures. While the cause for such discrepancies needs to be
investigated, we note that it lies within the current numerical implementation of the GFMD code and not in the GFMD
theory which is in principle exact. Lastly, the smart-block classical MD is the most computationally demanding approach.
Nevertheless, in contrast to BEM and GFMD, it naturally includes adhesion and friction in an atomistic way, and its current
implementation can be applied within the full pressure range.
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