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Theory of rubber friction and contact mechanics
B. N. J. Persson
Institut für Festkörperforschung, Forschungszentrum Ju¨lich, D-52425 Ju¨lich, Germany

~Received 12 March 2001; accepted 7 June 2001!

When rubber slides on a hard, rough substrate, the surface asperities of the substrate exert oscillating
forces on the rubber surface leading to energy ‘‘dissipation’’ via the internal friction of the rubber.
I present a discussion of how the resulting friction force depends on the nature of the substrate
surface roughness and on the sliding velocity. I consider in detail the case when the substrate surface
has a self affine fractal structure. I also present a theory for the area of real contact, both for
stationary and sliding bodies, with elastic or elastoplastic properties. The theoretical results are in
good agreement with experimental observation. ©2001 American Institute of Physics.
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I. INTRODUCTION

The nature of the friction when rubber slides on a ha
substrate is a topic of considerable practical importance,
for the construction of tires,1 wiper blades,1 and in the cos-
metic industry. Rubber friction differs in many ways fro
the frictional properties of most other solids. The reason
this is the very low elastic modulus of rubber and the h
internal friction exhibited by rubber over a wide frequen
region.

The pioneering studies of Grosch2 have shown that rub
ber friction in many cases is directly related to the inter
friction of the rubber. Thus experiments with rubber surfac
sliding on silicon carbide paper and glass surfaces give f
tion coefficients with the same temperature dependenc
that of the complex elastic modulusE(v) of the rubber. In
particular, there is a marked change in friction at high spe
and low temperatures, where the rubber’s response is dr
into the so-called glassy region. In this region, the fricti
shows marked stick-slip and falls to a level ofm'0.4, which
is more characteristic of plastics. This proves that the frict
force under most normal circumstances is directly related
the internal friction of the rubber, i.e., it is mainly abulk
propertyof the rubber.2

The friction force between rubber and a rough~hard!
surface has two contributions commonly described as
adhesion and hysteretic components, respectively.1 The hys-
teretic component results from the internal friction of t
rubber: during sliding the asperities of the rough substr
exert oscillating forces on the rubber surface, leading to
clic deformations of the rubber, and to energy ‘‘dissipatio
via the internal damping of the rubber. This contribution
the friction force will therefore have the same temperat
dependence as that of the elastic modulusE(v) ~a bulk prop-
erty!. The adhesion component is important only for cle
and relative smooth surfaces.

Because of its low elastic modulus, rubber often exh
elastic instabilities during sliding. The most well-known i
volves the compressed rubber surface in front of the con
area undergoing a buckling which produces detachm
waves which propagate from the front-end to the back-en
3840021-9606/2001/115(8)/3840/22/$18.00
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the contact area. These so called Schallamach waves3 occur
mainly at ‘‘high’’ sliding velocity and for very smooth sur
faces, but will not be considered further in this paper.

In three earlier papers we have studied both the adhe
and hysteretic components of rubber friction.4–6 Other stud-
ies of this topic are presented in Refs. 1, 7–9; referenc
considered only the interaction between a flat rubber surf
and a single surface asperity~or many identical asperities!. In
Ref. 6 we studied the hysteretic contribution to the fricti
for viscoelastic solids sliding on hard substrates with diff
ent types of~idealized! surface roughness.

In this paper I develop a theory of rubber friction when
rubber block is slid over a hard rough surface, with roug
ness on many different length scalesl. The theory is valid
for arbitrary~random! surface roughness, but explicit resul
are presented for self affine fractal surface profiles.10,11 Such
surfaces ‘‘looks the same’’ when magnified by a scaling fa
tor z in thexy-plane of the surface and by a factorzH ~where
0,H,1! in the perpendicularz-direction. I note that many
materials of practical importance have~approximately! self-
affine fractal surfaces. Thus, for example, road surfaces
the surfaces of many cleaved brittle materials tend to be
affine fractal with the fractal dimensionD f532H'2.2
22.5. In practice there is always a lower,l1 , and upper,l0 ,
cutoff length, so that the surface is self-affine fractal on
when viewed in a finite length scale intervall1,l,l0 . For
surfaces produced by brittle fracture, the upper cut off len
l0 is usually identical to the lateral sizeL of the fracture
surface. This seems also to be the case for many surfac
engineering importance~see, e.g., Ref. 14!. However, for
road surfaces the upper cutoffl0 is of order a few mm,
which corresponds to the size of the largest sand particle
the asphalt. Less is known about the short distance cutoffl1 ,
but I will argue later that in the context of rubber friction
may be taken to be of order a fewmm, so that the length
scale region over which the road surface may be assume
be fractal may extend over;3 orders of magnitude.

When rubber slides on a hard rough surface with rou
ness on the length scalesl, it will be exposed to fluctuating
forces with frequenciesv;v/l. Since we have a wide dis
tribution of length scalesl1,l,l0 , we will have a corre-
0 © 2001 American Institute of Physics
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3841J. Chem. Phys., Vol. 115, No. 8, 22 August 2001 Theory of rubber friction and contact mechanics
sponding wide distribution of frequency components in
Fourier decomposition of the surface stresses acting on
sliding rubber block. The contribution to the friction coeffi
cientm from surface roughness on the length scalel, will be
maximal whenv/l'1/t, where 1/t is the frequency where
Im E(v)/uE(v)u is maximal, which is located in the transitio
region between the rubbery region~low frequencies! and the
glassy region~high frequencies!. We can interpret 1/t as a
characteristic rate of flips of molecular segments~configura-
tional changes!, which are responsible for the visco-elas
properties of the rubber. Since the flipping is a therma
activated process it follows thatt depends exponentially~or
faster! on the temperaturet;exp(DE/kBT), whereDE is the
barrier involved in the transition. In reality, there is a wid
distribution of barrier heightsDE and hence of relaxation
times t, and the transition from the rubbery region to t
glassy region is very wide, typically extending over 3 orde
of magnitude in frequency.

The following observation is of great importance f
rubber friction. Consider the contribution to the rubber fr
tion from surface roughness of different wavelengthl and
amplitudeh, see Fig. 1. If we assume that the applied pr
sure is so high that the rubber is squeezed into comp
contact with the substrate, it follows from dimensional arg
ments that the magnitude of the hysteretic contribution to
friction coefficient only depends onh/l, i.e.,surface rough-

FIG. 1. Rubber~dotted area! sliding on a hard corrugated substrate. T
magnitude of the contribution to the friction from the internal damping
the rubber is the same in~a! and~b! because the ratio between the amplitu
and the wavelength of the corrugation is the same.~c! shows them(v)
curves for the roughness profiles in~a! and ~b! ~schematic!.
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ness of different length scale contribute equally to the fr
tion force if the ratio between the amplitude and wavelen
is constant. Thus, roughly speaking, we may state that s
face roughness of all length scales are equally important
course, the different wavelength contributions tom(v) will
peak at different sliding velocities~determined byv/l'1/t!,
i.e., the different wavelength contributions tom(v) are
shifted relative to each other along thev-axis, see Fig. 1~c!.
We may summarize these results by writingm
5 f (vt/l,h/l).

These profound results imply that it is very importa
not to a priori exclude any roughness length scale from t
analysis. The distribution of different length scalesl will
broaden them(v) curve, and also increase the peak ma
mum. However, let us note the following: Consider a surfa
with surface roughness on two different length scales as
dicated in Fig. 2. Assume that a rubber block is squee
against the substrate and that the applied pressure is
enough to squeeze the rubber into the large ‘‘cavities’’
indicated in the figure. It is clear that even if the rubber
able to make direct contact with the substrate in the la
cavities, the pressure acting on the rubber at the bottom
large cavity will be much smaller than the pressure at the
of a large asperity. Thus while, because of the high lo
pressure, the rubber may be squeezed into the ‘‘small’’ ca
ties at the top of a large asperity, the pressure at the bot
of a large cavity may be too small to squeeze the rubber
the small-sized cavities at the bottom of a large cav
Hence, during sliding the small-scale roughness may giv
contribution to the pulsating deformations of the rubber~and
hence to the friction force!, only at the top of the big asperi
ties. This important fact is taken into account in the analy
presented in this paper. Thus, ifA(l) is the ~apparent! area
of contact on the length scalel @more accurately, Idefine
A(l) to be the area of real contact if the surface would
smooth on all length scales shorter thanl, see Fig. 3#, then I
will study the functionP(z)5A(l)/A(L) which is the rela-
tive fraction of the rubber surface area where contact occ
on the length scalel5L/z ~where z>1!, with P(1)51.
Here A(L)5A0 denotes the macroscopic contact area@L is
the diameter of the macroscopic contact area so thatA(L)
'L2#. I will show that for an ideal elastic body~no plastic-
ity! squeezed against a rigid self affine fractal surface w
out a short-distance cut off,P(z)→0 asz→`. This result is

FIG. 2. Rubber sliding on a substrate with roughness on two different len
scales. The rubber is able to fill-out the long-wavelength roughness pro
but it is not able to get squeezed into the small-sized ‘‘cavities’’ at
bottom of a big cavity.
 license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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very important, because it shows that even without any s
distance cut off it is possible for the sliding friction force
remain finite, since the rubber will not make contact with~or
experience! the very short-wavelength surface roughne
Note that the longest roughness wavelength possible ar
order;L. This correspond to the wave vectorqL52p/L. If
we defineq5qLz, we can considerP(z)5P(q/qL) as a
function of q; I denote this function byP(q) for simplicity.

This paper focuses mainly on rubber friction, but,
indicated above, I also present a new theory of contact
chanics~see Appendices B and C!, valid for randomly rough
~e.g., self-affine fractal! surfaces. In the context of rubbe
friction, mainly elastic deformation will occur in the
substrate–rubber contact areas. However, the contact th
developed in this paper can also be applied when both ela
and plastic deformation occur in the contact areas. This c
is, of course, relevant to almost all materials other than r
ber.

This paper is organized as follows: In Secs. II and III
present some basic results related to self-affine fractal
faces and contact theories, which form a necessary b
ground for the theory developed in Secs. IV and V. In S
IV, I derive a general formula for the hysteretic contributio
to rubber friction. This formula contains the functionP(z)
introduced above, which is derived in Sec. V and Appen
B for randomly rough~e.g., self-affine fractal! surfaces. Sec-
tion VI contains numerical results for the velocity depend
friction coefficient. Section VII presents some general co
ments about rubber friction, and Sec. VIII is the summa
and conclusion. In Appendix C, I present a new contact m
chanics theory for randomly rough surfaces, when both e
tic and plastic deformation occurs in the contact areas
Appendix E, I study the contribution to rubber friction from
the emission of elastic waves from the sliding interface.

II. SELF-AFFINE FRACTAL SURFACES AND
CONTACT THEORIES

It has been found that many ‘‘natural’’ surfaces, e.
surfaces of many materials generated by fracture, can be
proximately described as self-affine surfaces over a ra

FIG. 3. A rubber ball squeezed against a hard, rough, substrate. Left
system at two different magnifications. Right: the area of contactA(l) on
the length scalel is defined as the area of real contact when the surf
roughness on shorter length scales thanl has been removed~i.e., the surface
has been ‘‘smoothened’’ on length scales shorter thanl!.
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wide roughness size region. A self-affine fractal surface
the property that if we make a scale change that is differ
for each direction, then the surface does not change
morphology,10,11see Fig. 4. Thus, the statistical properties
the surface are invariant under the scaling transformation

x→zx, y→zy, z→zHz, ~1!

where the exponentH can be related to the fractal dimensio
via D f532H. Since we expect 2,D f,3 it follows that
0,H,1. Recent studies have shown that asphalt road tra
are ~approximately! self-affine in a finite surface roughnes
interval, with an upper cut-off of order a few mm.12

In order to study rubber friction on a hard self-affin
fractal surface, it is first necessary to be able to describe
contact mechanics. A simple model of contact mechanics
fractal-like surfaces was studied as early as 1957
Archard.13,14 He showed that the area of real contactA is
~nearly! proportional to the load~or normal force!, A;FN .
In a recent series of papers by Rouxet al.15 and Bhushan and
co-workers,16 it is claimed that for self-affine surfaces th
area of real contact depends nonlinearly on the load. Ass
ing only elastic deformation they found

A;FN
2/(11H) , or FN;A(11H)/2. ~2!

SinceH,1 ~H51 correspond toD f52!, these theories pre
dict that the area of real contact increases faster than lin
with the load. This is usually not observed experimentally.
my opinion, the theories of Rouxet al. and of Bhushan and
co-workers are based on questionable assumptions~see Ap-
pendix D!. The contact theory developed in this paper~see
Appendices B and C! predictA;FN , unless the loadFN is
so large that the contact areaA is close to the nominal con
tact areaA0 .

In the theory developed in this paper, the friction coef
cient is given by a sum over different length scales. Now
most cases the upper limit in the sum is quite obvious.
example, for an asphalt road track the upper cutoff is of
order of a few mm~the typical grain sizes! as observed in
surface profile measurements. In a recent measuremen
asphalt road surface was observed to be a self-affine fra
down to the shortest length-scale studied~approximately
0.03 mm!.8 The short distance cutoff in the sum over leng
scales may, however, not be determined by the intrinsic

he

e

FIG. 4. Elastic contact between a flat rubber surface and a hard solid
strate. The surface is assumed to be self-affine fractal with an upper c
l0,L. The system is shown on the length scalel0 . Increasing the magni-
fication shows that within an~apparent! contact area, the rubber will only
make partial contact with the substrate~see text!.
 license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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3843J. Chem. Phys., Vol. 115, No. 8, 22 August 2001 Theory of rubber friction and contact mechanics
off of the fractal nature of the surface~which could be an
atomic distance!, but by surface contamination,17,18 ~or com-
pressed air pockets in small sized cavities!, or by a thin
‘‘skin’’ on the rubber surface with strongly modified prope
ties. For example, if the rubber surface is covered by sm
~uniformly sized! dust particles~e.g., talc or carbon or silica
particles from the fillers, or pulverized stone from a road,
carbon particles from the automobile exhaust!, then the low
distance cutoff is obviously determined by the particle s
@see Fig. 5~a!#, since the particle covered rubber surface c
not penetrate into surface cavities smaller than the typ
particle diameter. In fact, it is known that the tire-road fri
tion increases when a road surface has dried up after a st
rain fall. Presumably, the rain washes away contamina
particles from the road~and tire! surface. On the other hand
if the surface is covered by water or some other ‘‘lubric
tion’’ fluid ~e.g., oil or grease!, which fills out the small sur-
face cavities, then the low distance cutoff will be determin
by the smallest asperities which can penetrate above the
tamination layer@Fig. 5~b!#. Thus, the contamination laye
will remove the contribution to the energy dissipation fro
the small surface asperities and cavities, and reduce the
tion force. This effect is illustrated in Fig. 6 with experime
tal results for a rubber block sliding on dry clean~dashed
line!, dusted~dashed–dotted!, and wet~solid line! carborun-
dum stone surfaces.19 The figure also show results for we
surfaces with an added~5%! detergent. Roberts20 has shown
that polar substances like soaps prevent direct contact
tween track and rubber~see Sec. VII!; this explain why the
friction is slightly lower for the wet15% detergent case
compared to the wet, clean carborundum surface.

III. AREA OF REAL CONTACT: QUALITATIVE
DISCUSSION

I have already emphasized the importance of know
the nature of the area of real contact when discussing ru
friction. In this section, I discuss some basic results of c

FIG. 5. Influence of contamination on the rubber–substrate interac
Contamination particles~a!, or trapped liquid~b!, will inhibit the rubber to
get squeezed into the small sized surface cavities.
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tact theory, which form a necessary background for
theory presented in Secs. IV, V, and Appendices B and C

Consider first a flat rubber surface squeezed again
hard surface with a periodic corrugation with wavelengthl
and amplitude~or height! h; see Fig. 7. IfA0 is the nominal
contact area@i.e., the area of the~bottom! surface of the
rubber block#, andFN the load, then we define the averag
perpendicular stress~or pressure! s05FN /A0 . Let us now
study under which conditions the loadFN , and the rubber–
substrate adhesion forces, are able to deform the rubbe
that it comes in direct contact with the substrate over
whole surface areaA0 @Fig. 7~b!#, i.e., under which condi-
tions the rubber is able to deform and fill out all the surfa
‘‘cavities’’ of the substrate.

Assume first that a uniform stresss acts within a circular
area ~radius R! centered at a pointP on the surface of a

n.
FIG. 6. The kinetic friction coefficient for rubber sliding on a carborundu
surface under different conditions~from Ref. 19!.

FIG. 7. A rubber block squeezed against a substrate with a cosines c
gation. In ~a! the applied pressure is too small to squeeze the rubber
complete contact with the substrate, while in~b! it is high enough to do so.
 license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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semi-infinite elastic body with the elastic modulusE. This
will give rise to a perpendicular displacementu of P by a
distance which is easy to calculate using continuum mech
ics, u/R's/E. This result can also be derived from simp
dimensional arguments: First, note thatu must be propor-
tional to s since the displacement field is linearly related
the stress field~we assume here, and in what follows, th
linear elasticity theory is valid!. However, the only other
quantity in the problem with the same dimension as
stresss is the elastic modulusE sou must be proportional to
s/E. Since R is the only quantity with the dimension o
length we get at onceu;(s/E)R. Thus, with reference to
Fig. 7, if h/l's0 /E, the perpendicular pressures0 will be
just large enough to deform the rubber to make contact w
the substrate everywhere.

In the case of passenger tires one typically hass0

'0.2 MPa, and in the case of truck tires 0.8 MPa. This is
least one order of magnitude smaller than the~static or low-
frequency! elastic modulusE'10 MPa of filled rubbers~but
only a little smaller than that of unfilled rubber whereE
'1 MPa!. We conclude that the pressures0 is in general not
able to deform the rubber to fill out the large surface cavit
on a road, since in this case one typically hash/l'1, which
according to the discussion above would require a local p
sure of orders'E. However, according to the conta
theory of Greenwood,14,17theaveragepressure which acts in
the rubber–substrate contact area at thelargest asperities is
of order'(D/R)1/2E, whereD is the rms surface roughnes
amplitude andR the ~average! radius of curvature of the
largest surface asperities~see Fig. 4!. Since for a road surface
we expectD'R it is clear that the local pressure in th
contact area of the large surface asperities will be of orde
E, i.e., just large enough in order for the rubber to defo
andfill out at least some of the smaller sized surface cavit.
The way the~apparent! contact area varies with the observ
tion length scaleL/z is described by the functionP(z).

Next, let us consider the role of the rubber–substr
adhesion interaction.21 When the rubber deforms and fills ou
a surface cavity of the substrate, an elastic energyEel

'Elh2 will be stored in the rubber. Now, if this elasti
energy is smaller than the gain in adhesion energyEad

'Dgl2 as a result of the rubber–substrate interact
~which usually is mainly of the van der Waals-type!, then
~even in the absence of the loadFN! the rubber will deform
spontaneously to fill out the substrate cavities. The condi
Eel5Ead gives4,5 h/l'(Dg/El)1/2. For the rough surface
of interest here we typically haveh/l'1, and with E
51 MPa and the surface free energy changeDg
53 meV/Å2 the adhesion interaction will be able to defor
the rubber and completely fill out the cavities ifl
,0.1mm. However, I believe that because of surface c
tamination there will be a low distance cut-off in the su
over length scales which is larger than 0.1mm, and for this
reason, in the context of the tire-road friction, I do not b
lieve that the adhesion rubber–substrate interaction is im
tant. The same conclusion has been reached by Fuller
Tabor in an experimental study of the dependence of rub
substrate adhesion on the surface roughness.22

The discussion above is for stationary surfaces. Dur
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sliding we must take into account that the elastic moduluE
depends on the perturbing frequencyv, and thatE(v) is a
complex quantity with an imaginary part related to the int
nal friction of the rubber. In a first approximation we ma
still use the estimates presented above for the deformat
induced by the largest asperities if we replaceE5E(0) with
uE(v)u, where the frequencyv5v/l0 . Now, for a typical
rubber at room temperatureE(v)'E(0) for v,vc

5105 s21. When the frequency increases towards the gla
region (v;109 s21), uE(v)u increases by a factor o
;1000. In a typical case, for a tires sliding on a road w
v'10 m/s one getsv/vc'0.1 mm. Thus, the deformation
induced by the largest asperities are relatively well descri
by using the low frequency elastic modulusE(v)'E(0).
However, the rubber will be much harder to deform by t
small sized asperities since the effective elasticityuE(v)u
may ~depending on the size of the asperities! be up to 1000
times higher than the low-frequency modulus. On the ot
hand, in the antilock braking system~ABS! of automobile
tires on dry or wet roadv,1 cm/s in the incipient part of the
footprint area, and in this casev/vc,0.1mm so that surface
cavities with linear size larger than 0.1mm will experience
relative ‘‘soft’’ rubber. These aspects of the~frequency-
dependent! deformation of the rubber by the substrate aspe
ties is taken fully into account in the theory developed belo

In Sec. V and Appendices B and C, I develop a n
contact theory for surfaces with roughness on many differ
length scales. The contact theory of Greenwood was or
nally developed for surfaces with roughness on a sin
length scale. Thus, in this theory the surface asperities
‘‘approximated’’ by spherical caps ofidentical radius of
curvature ~but with a Gaussian height distribution!. The
Greenwood theory has been applied to real surfaces
roughness on many different length scales, by defining
average radius of curvatureR ~see, e.g., Ref. 23!. However,
it turns out thatR depends strongly on the resolution of th
roughness-measuring instrument, or any other form of fil
ing, and hence is not unique. The contact theory develope
this paper is based on a completely different physical
proach, and gives well defined results for surfaces with a
trary surface roughness.

IV. SLIDING FRICTION

Using the theory of elasticity~assuming an isotropic
elastic medium for simplicity!, one can calculate the dis
placement fieldui on the surfacez50 in response to the
surface stress distributionss i5s3i . Let us define the Fou-
rier transform,

ui~q,v!5
1

~2p!3 E d2x dt ui~x,t !e2 i (q"x2vt),

and similar fors i(q,v). Herex5(x,y) andq5(qx ,qy) are
two-dimensional vectors. In Appendix A, I have shown th

ui~q,v!5Mi j ~q,v!s j~q,v!,

or, in matrix form,

u~q,v!5M ~q,v!s~q,v!,

where the matrix~see Appendix A!,
 license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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M52
i

rcT
2 S 1

S~q,v! FQ~k,v!~ ẑq2qẑ!

1S v

cT
D 2

~pLẑẑ1pTq̂q̂!G1
1

pT
eeD , ~3!

whereq̂5q/q, e5 ẑ3q̂, and where

S5S v2

cT
2 22q2D 2

14q2pTpL , ~4!

Q52q22v2/cT
212pTpL , ~5!

pT56S v2

cT
2 6 i e2q2D 1/2

, pL56S v2

cL
2 6 i e2q2D 1/2

,

~6!

where the1 and 2 sign refers tov.0 andv,0, respec-
tively, and wheree is an infinitesimal positive number. In th
equations above,r, cT , andcL are the mass density and th
transverse and longitudinal sound velocities of the solid,
spectively. Note thatcT and cL are complex frequency de
pendent quantities given by

cT
25

E

2r~11n!
, ~7!

cL
25

E~12n!

r~11n!~122n!
, ~8!

whereE(v) is the complex elastic modulus andn(v) is the
Poisson ratio.

We now assume thatu¹h(x)u,1 @wherez5h(x) is the
surface height profile# and that the surface stresss(q,v)
only acts in thez-direction so that

uz~q,v!5Mzz~q,v!sz~q,v!, ~9!

where

Mzz5
2 i

rcT
2

pL

S~q,v! S v

cT
D 2

. ~10!

Since in the present casev5vq we getv/cTq5v/cT!1 in
most cases of practical interest. Thus, we can expand to l
ing order inv/cTq. This gives

Q'v2/cL
2,

S'2q2v2S 1

cL
2 2

1

cT
2D ,

and

pT' iqS 12
v2

2cT
2q2D ,

and similar forpL . Thus, we get

Mzz5
2 i

rcT
2

pL

S~q,v! S v

cT
D 2

'2
1

2rcT
2q F12S cT

cL
D 2G21

,

~11!

so that, using Eqs.~7!, ~8!, and~11!,

~Mzz!
2152

Eq

2~12n2!
. ~12!
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It is interesting to note that if, instead of assuming that
surface stress act in thez-direction, we assume that the dis
placementu point along thez-direction, then

sz~q,v!5~M 21!zz~q,v!uz~q,v!,

where in the limitv/cTq!1,

~M 21!zz52
2Eq~12n!

~11n!~324n!
,

which differ from Eq. ~12! only with respect to a factor
4(12n)2/(324n). For rubberlike materials (n'0.5) this
factor is of order unity. Hence, practically identical resu
are obtained independently of whether one assumes tha
interfacial stress or displacement vector is perpendicula
the nominal contact surface. In reality, neither of these t
assumptions hold strictly, but the result above indicate t
the theory is not sensitive to this approximation.

Let us write

u~x,t !5E d2qdv u~q,v!ei (q"x2vt).

If we assume that

u~x,t !5u~x2vt !,

then

u~q,v!5
1

~2p!3 E d2xdt u~x2vt !e2 i (q"x2vt)

5d~v2q"v!u~q!, ~13!

where

u~q!5
1

~2p!2 E d2x u~x!e2 iq"x.

If s f denotes the frictional shear stress, then the energy
sipated during the time periodt0 equals

DE5s fA0vt0 , ~14!

where A0 is the surface area. But this energy can also
written as

DE5E d2xdt u̇•s

5~2p!3E d2qdv ~2 iv!u~q,v!•s~2q,2v!, ~15!

wherev5v"q. Substituting Eq.~9! in Eq. ~15! and using Eq.
~13! and that

@d~v2q"v!#25~ t0/2p!d~v2q"v!,

gives

DE5~2p!2t0E d2q~2 iv!@Mzz~2q,2v!#21

3uz~q!uz~2q!.

Comparing this expression with Eq.~15! gives the frictional
shear stress,
 license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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s f5
~2p!2

vA0
E d2q~2 iv!@Mzz~2q,2v!#21

3^uz~q!uz~2q!&, ~16!

where ^¯& stands for ensemble averaging, i.e., averag
over different realization of the rough surface profile.

As an application, if

uz~x!5h0 cos~q0x! cos~q0y!,

we get

uz~q!5
h0

4
@d~qx2q0!1d~qx1q0!#

3@d~qy2q0!1d~qy1q0!#.

Substituting this result in Eq.~16! and using thatv5vqx

~assuming sliding along thex-axis! and that

@d~q2q0!#25@A0 /~2p!2#d~q2q0!,

gives

s f52 i 1
8 h0

2q0~@Mzz~q0 ,q0 ,2q0v !#21

2@Mzz~q0 ,q0 ,q0v !#21!

5 1
4 h0

2q0 Im@Mzz~q0 ,q0 ,q0v !#21.

Using Eq.~12! this gives

s f'
1

8
~h0q0!2 Im

E~q0v !

12n2 . ~17!

Note that, in accordance with the discussion in Sec. I,s f

depends only onq0h0 , so that the surface roughness profil
in Fig. 1 give equally important contributions to the slidin
friction.

Let us now consider sliding on a randomly rough surfa
described by the functionz5h(x) @wherex5(x,y)#. Assume
first that the rubber is able to deform and completely follo
the substrate surface profile so thatuz'h(x). Using Eq.~16!
gives

s f52 i
~2p!2

A0
E d2q qx ^h~q!h~2q!&

3@Mzz~2q,2qxv !#21, ~18!

where we assumed that^h&50. Now, note that

^h~q!h~2q!&5
A0

~2p!4 E d2x ^h~x!h~0!&e2 iq"x

[
A0

~2p!2 C~q!, ~19!

since ^h(x)h(x8)& depends only on the differencex2x8.
The spectral density C(q) is defined by

C~q!5
1

~2p!2 E d2x ^h~x!h~0!&e2 iq"x. ~20!

We expectC(q) to have the general form shown in Fig.
Downloaded 15 Dec 2004 to 134.94.160.89. Redistribution subject to AIP
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The result in Fig. 8~a! corresponds to a self-affine fracta
surface, where the lowq-cut off ~long distance! is deter-
mined by the lateral sizeL of the contact area,q0;2p/L,
while in Fig. 8~b!, we assume that the self-affine fractal sc
ing only occurs forq.q0 , whereq0 is independent of the
size of the rubber–substrate contact area~see Sec. II!.

Substituting Eq.~19! in Eq. ~18! and using Eq.~12!
gives

s f5
1

2 E d2q q2 cosf C~q! Im
E~qv cosf!

12n2 , ~21!

FIG. 8. The height correlation functionC(q) for three different~idealized!
surface roughness profiles.~a! Self-affine fractal surface with the upper cu
off ;2p/L, determined by the lateral sizeL of the surface.~b! Self-affine
fractal surface with the upper cutoffq0 independent ofL. ~c! C(q) for a
rough surface, characterized by a narrow distribution of wavelengthl1

52p/q1 components.
 license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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where we have used polar coordinates so thatqx5q cosf,
and where E5E(v)5E(qv cosf) and n5n(v)
5n(qv cosf).

The friction coefficientm can be obtained by dividing
the frictional shear stress~21! with the pressures0 ,

m5
1

2 E d2q q2 cosf C~q!P~q! Im
E~qv cosf!

~12n2!s0
. ~22!

In Eq. ~22! we have introduced an additional factorP(q),
defined as the fraction of the original macrocontact a
where contact remains when we study the contact area on
length scalel52p/q. In principle,n depends on frequenc
but the factor 1/(12n2) varies from 4/3'1.33 for n50.5
~rubbery region! to '1.19 forn50.4 ~glassy region! and we
can neglect the weak dependence on frequency.

SinceC(q) andP(q) only depend on the magnitude o
q, from Eq. ~22!,

m5
1

2 E dq q3 C~q!P~q!

3E
0

2p

df cosf Im
E~qv cosf!

~12n2!s0
. ~23!

Note that the factor cosf in the integrand vanishes whe
f5p/2, while it is maximal whenf50. This has a simple
but important physical origin: Consider two cosine-surfa
corrugations, where the ‘‘wave vector’’ points~a! along the
x-axis ~the sliding direction!, and ~b! along they-axis, see
Fig. 9. The former case corresponds tof50, and in this case
the rubber block will experience pulsating deformations d
ing sliding along thex-axis. The second case correspond
f5p/2, where the elastic deformations of the rubberdo not
changeduring sliding along thex-axis, and this type of sur
face roughness will therefore not contribute to the friction

The present theory of rubber friction differs from th
theory of Klüppel and Heinrich9 in that it is fully 3D, and it
takes into account@via the functionP(z)# how the rubber, on
each length scaleL/z, is able to follow the hard substrat
profile, in contrast to Ref. 9, where this effect was only tak
into account in some average way. Thus, the numerical
sults presented below are rather different from the predic
of the theory in Ref. 9.

FIG. 9. A cosine roughness profile with the wave vector~a! along, and~b!
perpendicular to the sliding direction. Only in case~a! will the surface
roughness generate time-dependent~fluctuating! deformations of the rubber
block.
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a
he

e

-

n
e-
n

V. CONTACT THEORY FOR RANDOMLY ROUGH
SURFACES

We must now derive the functionP(q). If A0 denotes
the nominal contact area, the loadFN5s0A0 . This load
must remain unchanged as we study the contact at sh
length scales. Consider the system at the length scall
5L/z, whereL is of order the diameter of the nominal con
tact area. We defineqL52p/L and write q5qLz. Thus,
P(q)5P(qLz), which we denote byP(z) for simplicity. If
^s&z denotes theaveragepressure in the~apparent! contact
area on the length scaleL/z,

s0A05^s&z P~z!A0 , ~24!

so that

P~z!5s0 /^s&z . ~25!

Thus, in order to determineP(z) we must first determine
^s&z . If P(s,z) denotes the stress probability distribution
the contact area on the length scaleL/z, then

^s&z5E
0

`

ds sP~s,z!Y E
0

`

ds P~s,z!. ~26!

Using Eqs.~25! and ~26! gives

P~z!5s0E
0

`

ds P~s,z!Y E
0

`

ds sP~s,z!. ~27!

The derivation ofP(z) andP(s,z) are given in Appen-
dix B. Here I give the result forP(z),

P~z!5
2

p E
0

`

dx
sinx

x
expF2x2E

1

z

dz8 g~z8!G , ~28!

where

g~z!5
1

8
qLq3C~q!E dfUE~qv cosf!

~12n2!s0
U2

. ~29!

Now, assume that the macroscopic pressures0 depends
on the lateral positionx in the nominal contact region, a
would be the case if, e.g., a rubber ball is squeezed again
nominally flat substrate@wheres0(x) is given by the Hertz
expression#. If we assume that the cut off distancel0 is
much shorter than the diameter of the contact area@so that
the variation ofs0(x) over the distancel0 is negligible#,
then, if we replace the constants0 with the functions0(x),
the contact theory developed in Appendix B is still valid. W
note, however, that as long as adhesion is unimpor
~which is the case if the surfaces are rough enough35!, and
s0(x) is small compared to the~low-frequency! elastic
modulusE, the rubber friction coefficient is~nearly! inde-
pendent of the actual pressure distribution in the nomi
contact area~see below and Appendix C!.

Let us reintroduceq5qLz, and summarize the basic re
sults obtained above. The steady state kinetic friction coe
cient for a flat rubber surface sliding on a nominally fl
substrate is in the most general case is given by
 license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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m5
1

2 EqL

q1
dq q3 C~q!P~q!

3E
0

2p

df cosf Im
E~qv cosf!

~12n2!s0
, ~30!

P~q!5
2

p E
0

`

dx
sinx

x
exp@2x2G~q!#, ~31!

where, using Eq.~29!,

G~q!5
1

8 EqL

q

dq q3C~q!E
0

2p

dfUE~qv cosf!

~12n2!s0
U2

. ~32!

We consider now the limits0!E(0), which is satisfied in
most applications. In this case, for mostq-values of interest,
G(q)@1, so that onlyx!1 will contribute to the integral in
Eq. ~31!, and we can approximate sinx'x and

P~q!'
2

p E
0

`

dx exp@2x2G~q!#5@pG~q!#21/2. ~33!

Thus, within this approximation, using Eqs.~32! and~33! we
get P(q)}s0 so thatm is independentof the nominal stress
s0 . Similarly, note that if we scaleE(v)→aE(v), then
from Eqs.~32! and~33!, P(q)}1/a, so thatm depends only
on the frequency variation of the complex elastic modul
but not on its magnitude. We note that even if the mac
scopic contact pressures0(x) depends onx, and the integral
~33! is still valid,

P~q,x!'
2

p E
0

`

dx exp@2x2G~q,x!#5@pG~q,x!#21/2.

Thus, if s0(x)!E(0) for all x, the friction force will be
independent ofs0(x). For tires the conditions0(x)!E(0)
is usually satisfied for allx. Consequently, on a dry roa
track one expects the same friction for wide and narrow tir
assuming the same rubber temperature and that the rub
road adhesional interaction is unimportant.

In order to take into account thatP(q)→1 whenG(q)
→0, we use the interpolation formula,

P~q!'~11@pG~q!#3/2!21/3. ~34!

Numerical evaluation of Eq.~31! shows that Eq.~34! is an
accurate representation ofP(q) for all q ~or, equivalently, all
G!.

If we assume that the substrate surface is self affine f
tal on all length scale between an upper and lower cut
l0[2p/q0 and l1[2p/q1 , we have@see Fig. 8~b!# C(q)
50 for q,q0 , while for q.q0 ,

C~q!'k~q/q0!22(H11), ~35!

where H532D f ~the fractal dimension 2,D f,3!. If we
define ^h2&5h0

2/2, then Eq.~20! gives k5(h0 /q0)2H/2p.
Using Eqs.~30! and ~35! with q5q0z gives

m'
1

4p
~q0h0!2HE

1

q1 /q0
dz z22H11P~q0z!

3E df cosf Im
E~zq0v cosf!

~12n2!s0
~36!
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and from Eqs.~32! and ~35!,

G~q!5
1

16p
~q0h0!2HE

1

q/q0
dz z22H11

3E dfUE~q0zv cosf!

~12n2!s0
U2

. ~37!

Note that since, to a good approximation,P(q)
;@G(q)#21/2, it follows that P;1/q0h0 , and thus m
;q0h0 .

If we assume thatE(v) approaches a well defined lim
asv→`, then Eq.~37! gives for largez, G(q0z);z222H.
Since 0,H,1 it follows thatG(q0z)→` asz→`. Thus,
for large z the integral~28! will be dominated by the smal
x-region and we can expand sinx' x. Substituting this result
in Eq. ~46!, usingG;z222H and defining a new integration
variabley5xz12H, givesP(z);z211H asz→`. Thus for
0,H,1 the contact areagoes to zeroasz→`. This will, of
course, not occur in real systems, where there always exis
upper cutoffzmax5q1 /q0 in the integral overz. For example,
the shortest possible distances are of atomic length, and
will give an upper cutoff. In practice, the cutoff is likely t
occur at a much larger length scale because of contamina
particles, or trapped fluid~or trapped pockets of compresse
air!, which will inhibit the elastic media from penetratin
and fill out the small-sized roughness cavities~see Sec. III
and Fig. 5!. In addition, if the rubber has a thin modifie
surface layer~skin!, this may also act as a cut off. Furthe
more, when the area of real contact decreases the local p
sure in the contact areas will finally reach the yield stress
the materials and beyond that point the area of real con
stays constant. However, even without an upper cutoff
friction coefficient given by Eq.~36! will ~for a fixed sliding
velocity v! remain finite aszmax5q1 /q0→`. This would not
necessarily be the case ifP(z)51 for all z since the inte-
grand in Eq.~36! ~with P51! behaves asz22H for largez,
and the integral;zmax

122H which diverge ifH,0.5. However,
when the correct~asymptotic! dependenceP(z);z211H is
taken into account the integral converges as;zmax

2H , so that
the very largez-contribution to the friction force will always
give a small contribution. Note thatH→0 corresponds to
very rough surfaces~fractal dimensionD f'3!, and in this
case the integral clearly converges relatively slowly.

It is possible to carry the analysis presented above
ther, by deriving an approximate analytical expression
m(v). This result will be presented elsewhere.

VI. NUMERICAL RESULTS

As an example, assume thatE is given by the model
shown in Fig. 10. This model is, in fact, not a very goo
description of real rubbers, since the transition with incre
ing frequency from the rubbery region to the glassy region
much too abrupt, leading to a much too narrow~and too
high! m(v) peak. Nevertheless, the model gives a qual
tively correctE(v). Later we will use experimental data fo
E(v) for two different rubbers, illustrating how the resul
based on the present model~Fig. 10! are quantitatively modi-
fied.
 license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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The model in Fig. 10 corresponds to the elastic modu

E~v!5
E1~12 ivt!

11a2 ivt
. ~38!

Note that E(`)5E1 and E(0)5E1 /(11a) so that
E(`)/E(0)511a. Since typically E(`)/E(0)'1000 we
takea51000 in all numerical calculations presented belo
We assumeE1@s0 , in which casem(v) is independent of
E1 ands0 . Note that

E~zq0v cosf!5
E1

11a

~11a!212 i zV

12 i zV
,

whereV5q0vt/(11a). Thus,m as a function ofV depends
only on H and q0h0 . However, instead of plottingm as a
function ofV, we prefer to use real units corresponding to
typical case. We chooset51023 s, and H50.85, q0

52000 m21, andq0h051. Sincem;q0h0 , the friction co-
efficient for otherq0h0 can be obtained from direct scaling

Figure 11 shows the friction coefficient as a function
the sliding velocity, as obtained from Eqs.~30!–~32!. I show
results for the cutoff parameterzmax510, 100, and 1000. We
note that the inclusion ofP(z) in Eq. ~36! is very important,

FIG. 10. Rheological model. In all calculations belowt50.001 s, E1

5109 Pa, andE1 /E25a51000.

FIG. 11. The kinetic friction coefficient for rubber sliding on a substra
with a self-affine fractal surface profile characterized by the exponenH
50.85. Calculations are presented for different cutoffzmax and with q0h0

51 andq052000 m21. Results for the rheological model shown in Fig. 1
Downloaded 15 Dec 2004 to 134.94.160.89. Redistribution subject to AIP
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since the decrease of the~apparent! contact area with in-
creasing magnification, gives a strong reduction of the c
tribution to the friction force from the small-scale roughne
Figure 12 showsP(z) as a function ofz, for several sliding
velocities v. Figure 13 shows howm(v) depends on the
fractal dimensionD f whenzmax5100, with the other param
eters the same as in Fig. 11. In Fig. 14, I showmmax

5max$m(v)% ~from Fig. 13 and from additional calculations!
as a function ofH ~or D f!. Note that when the fractal dimen
sionD f532H increases towards 3,mmax first increases, and
then, whenD f increases beyond 2.9,mmax decreases.

The rheological model used above~see Fig. 10! gives a
too abrupt transition from the rubbery region to the glas
region with increasing frequency which leads to a too h
mmax and too narrowm(v) peak. We therefore present som
results based on experimentally measured shear mod
Figure 15 shows the real ReG(v) and imaginary ImG(v)
part of the shear modulus for synthetic polyisoprene~at T
5303 K!, reticulated with dicumyl peroxide and withou
filler. The rubber glass transition temperatureTg5303 K;

FIG. 12. Variation ofP(z) with the magnificationz, for a few different
sliding velocities for the system studied in Fig. 11.

FIG. 13. The kinetic friction coefficient for rubber sliding on a substra
with a self-affine fractal surface profile with the cutoffzmax5100, and with
q0h051. Calculations are presented for different exponentsH using the
rheological model shown in Fig. 10 for the same parameters as in Fig.
 license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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this rubber is, of course, not used for tires, but was used
detailed study of rubber friction.24 In Fig. 16 we show the
resulting friction coefficientm(v) as calculated from the ex
perimentalG(v)-data given in Fig. 15, withq052000 m21

and q0h051 and withH50.85. For thezmax5100 case, I
show results for three different nominal~or average! pres-
sures:s050.1, 1, and 10 MPa. The nominal pressure at
tire-road interface is of order 0.3 MPa so that in that case
expect no dependence ofm on s0 . However, whens0 be-
comes of orderE(0) the friction coefficient is no longe
independent ofs0 , but decreases with increasings0 ~see 10
MPa curve in Fig. 16!. Note that the effect of the applie
pressure~Fig. 16! manifests itself mainly on the low-velocit
side of them(v) peak.

Finally, let us present some results for a carbon and si
reinforced rubber compound, used by a major tire comp
~Pirelli! for ‘‘all-year-around’’ tires. One problem with apply
ing the present theory to filled rubbers is the strongly n
linear relation between the shear stress and the shear s

FIG. 14. The variation of the maximum friction coefficient~from Fig. 13!
with the parameterH.

FIG. 15. The real and the imaginary part of the shear modulus of poly
prene rubber~glass transition temperatureTg5303 K! as a function of fre-
quency, forT5303 K.
Downloaded 15 Dec 2004 to 134.94.160.89. Redistribution subject to AIP
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for filled rubbers. This nonlinearity is associated with t
breakdown of the filler network, which occurs in the range
a few % strain amplitude. Since the stains involved in rub
friction when sliding on a road surface is of order unity~or
;100%!, when calculating the tire-road friction coefficien
the effective elastic modulusE(v) obtained from large am-
plitude stress-strain measurements should be used. Figu
shows the friction coefficient for two different temperature
40 °C and 70 °C, and for the cutoffzmax5100 and 1000. We
have assumed a self-affine fractal substrate withq0

52000 m21, q0h051, and H50.8. The complex elastic
modulusE(v) used in the calculation was measured at 8
strain amplitude, which is so large that a complete bre
down of the filler network has occurred. Thus, further i

-

FIG. 16. The kinetic friction coefficient for polyisoprene rubber sliding on
substrate with a self-affine fractal surface profile characterized by the e
nentH50.85. Calculations are presented for the cutoffzmax5100 and 1000,
and with q0h051 and q052000 m21. For the zmax5100 case we show
results for three different nominal pressures,s050.1, 1, and 10 MPa. For
the shear modulus shown in Fig. 15.

FIG. 17. The kinetic friction coefficient for an ‘‘all-year’’ tire-rubber sliding
on a substrate with a self-affine fractal surface profile characterized by
exponentH50.80. Calculations are presented for the cutoffzmax5100 and
1000, and withq0h051 andq052000 m21, and for two different tempera-
tures,T540 °C and 70 °C.
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crease in the strain amplitude gives only small modificatio
of the stress–strain relation, which has a negligible influe
on the sliding friction. However, ifE(v) is measured at low
strain amplitude, say 1%, the friction coefficient~not shown!
is about half as large as when the calculation is based on
8% stain amplitude data. In Fig. 17 we only showm(v) up to
the velocity where the friction coefficient is maximal; high
velocities are probably of no direct interest for tires since
region wherem(v) decreases with increasingv should be
avoided, as interfacial stick-slip may occur whenm8(v)
,0, which may result in an enhanced wear rate, and a l
noise.25

VII. DISCUSSION

The theory developed above can be used to estimate
kinetic friction coefficient for rubber sliding on a rough ha
substrate. The input for the calculation, namely, the comp
elastic modulusE(v), and information about the substra
roughness@spectral functionC(q)#, can be obtained directly
from relative simple experiments. In this section, I wou
like to make some additional comments related to rub
friction.

First, it would be interesting to perform experiment o
systems with well defined surface roughness. Thus, it is n
possible to prepare26 surfaces covered by ordered arrays
nearly identical hemispherical ‘‘bumps.’’ Sliding of rubbe
on such well defined substrates would be good model
tems for an accurate test of the theory developed abov
would also be interesting to perform rubber friction measu
ments on perfectly flat substrates to study the adhesi
contribution to friction. I note that most earlier studies of t
adhesional contribution have used polished glass surf
which now are known to be very rough on the nanome
scale.27

By using a transparent substrate, it should be possibl
study the asperity contact areas during squeezing and s
ing of thin fluid films. In fact, Roberts20 has already studied
fluid films between rubber and a glass substrate. He
shown that the great flexibility of rubber surfaces leads
ready entrapment of liquid by elastic deformation. Simi
effects have recently been observed for thin organic liq
films between mica surfaces,28,29 and also observed in com
puter simulations.30 Roberts also found that under certa
circumstances thin~uniformly thick! fluid films remains
trapped at the rubber–substrate interface. This happens w
charge is introduced upon the contact surfaces leading t
electrical repulsion force between them. Such a force
support the normal load provided the contact pressure is
higher than;0.1 MPa. In a typical case an equilibrium film
of liquid some 200 Å thick becomes established between
surfaces. The generation of repulsive forces between ru
and glass surfaces means that the pair will make a micro
forming contact with a uniform thin film of liquid betwee
them~see Fig. 18!. ~Similar effects may be important in bio
logical systems, e.g., polyelectrolyte layers are respons
for the low friction in mammalian joints.31! This can be used
to measure the viscosity of water in thin films by squee
action. The method has the advantage that dust or sur
asperities can be tolerated without appreciably effecting
Downloaded 15 Dec 2004 to 134.94.160.89. Redistribution subject to AIP
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result. In this way it has been shown that water~containing a
trace of sodium dodecyl sulphate to generate electrical re
sive forces! in thin films 200–2000 Å thick possesses visco
ity that is constant over this range of thickness and alm
the same as the bulk viscosity. Roberts32 also found that the
rubber–glass contact in shear is stable~uniform film! under
contact pressures of about;0.1 MPa. However, friction
measurements have shown that the electrolyte solution a
does not effectively lubricate the contact surfaces when fi
sheared are thinner than 100 Å. If, however, a surface ac
agent~e.g., sodium dodecyl sulphate!, is included in the elec-
trolyte solution, monolayer protection prevents surfaces fr
coming into intimate contact at points where the separa
liquid film is locally punctured. The shear strength of th
liquid film itself appears to remain constant and nearly

FIG. 18. A thin fluid layer between a rubber surface and a hard ro
substrate. When charge is introduced upon the contact surfaces an ele
repulsion force occurs between them, which may support the normal p
sure of at least;0.1 MPa. In a typical case an equilibrium film of liquid
some 200 Å thick becomes established between the surfaces.~a!–~c! show
the system under increasing squeezing pressure. The generation of rep
forces between rubber and glass surfaces means that the pair will ma
microconforming contact with a uniform thin film of liquid between them
illustrated in~c!.
 license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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same as the bulk viscosity of the liquid whether the film is
or 50 000 Å thick.

Another very interesting topic is rubber friction on ic
When most solids, e.g., glass, stone or metal, slide on ice
friction drop as the sliding velocity increases. As shown
Bowden,33,5 this is caused by production of melt water as
result of frictional heating of the ice surface. For rubber
ice, however, Roberts34 has observed the opposite effect:
the temperature range210 °C,T,0 °C the frictional stress
increaseswith increasing sliding velocity. This can be ex
plained by assuming that a thin liquidlike water layer occ
at the rubber–ice interface even in the absence of slidin
is known that at the ice–vapor interface such a liquidl
layer does indeed exist as a result ofpremelting.36 It remains
to be understood why the premelted layer is absent when
ice is in contact with, e.g., glass or a metal oxide, but
when it is in contact with rubber.

I believe that the explanation of this remarkable ph
nomena is as follows: Water is likely to chemisorb on gla
and on most metal oxide surfaces.36 Thus, when such
H2O-monolayer~‘‘icelike’’ ! surfaces are brought in conta
with an ice surface with a thin water layer~caused by pre-
melting!, then the situation will be similar to the case
bringing an ice block in contact with another ice bloc
where the water layer clearly will disappear~‘‘refreeze’’! in
the contact area. On the other hand, because of the
nature of rubber, it is unlikely that a layer of chemisorb
water molecules will occur on the rubber surface. Furth
more, the rubber surface is likely to be microscopica
rough and the rubber molecules undergoes large the
movement which may tend to break up any icelike struct
at the interface. For this reason it is plausible that a liquidl
water layer may exist at the rubber–ice interface but
when ice is in contact with a hard, high energy solid surfa
such as glass or metal oxides. It would be interesting to st
this problem in greater detail, e.g., using molecular dyna
ics.

Roberts34 also found that when a flat rubber surfa
slides on a flat ice surface below215 °C at speeds less tha
1 mm/s Schallamach waves are observed. At230 °C and for
speeds in excess of 100 mm/s the rubber wore rapidly
the friction fell as wear progressed. Rubber fragments w
seen to form between the sliding surfaces and to bec
rolled together; they were then left deposited on the ice tra

Another extremely important topic is the~elastohydrody-
namic! squeezing of thin liquid layers between a rubber s
face and a hard rough~e.g., self-affine fractal! substrate, e.g.
a water film squeezed between a tire and a road surface.
is a very complex problem related to cavity-connectivity, d
tribution of aperture,37 and to the hydrodynamic pressure d
tribution in the liquid film at the interface, all of which de
pends on the local pressure and the squeeze time.
problem may be studied by computer simulations, but
very large number of length scales involved in most syste
of practical interest, will make a comparison with experime
nontrivial.

The contact theory developed in this paper can be
tended to the case where the rubber–substrate adhesi
important~which requires ‘‘smooth’’ surfaces!. We note that
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Fuller and Tabor22 have already studied the influence of th
substrate roughness on the rubber–substrate adhesion
found ~experimentally! that a relative small surface rough
ness~rms roughness;1 mm, or larger! is enough to remove
~or kill ! the effect of adhesion. However, when trying
understand this result theoretically, they employed
Greenwood-type of theory with roughness on a single len
scale, while real surfaces always have roughness on m
different length scales. A treatment of the adhesion con
problem within the present formalism gives a rather differe
picture of the role of surface roughness.38

Finally, for practical applications it is necessary to stu
the heating of the rubber during sliding. This problem is,
fact, closely related to the friction problem, since the h
source densityQ(x,t) is determined by the spatial distribu
tion of the hysteretic energy losses in the surface region
the rubber block. The temperature fieldT(x,t) must be de-
termined by solving the heat diffusion equation with the h
sourceQ(x,t), and with the appropriate boundary conditio
which depend on the external conditions~e.g., road tempera
ture!.

VIII. SUMMARY AND CONCLUSION

There is at present a strong drive by tire companies
design new rubber compounds with lower rolling resistan
higher sliding friction, and reduced wear. At present the
attempts are mainly based on a few empirical rules and
very costly trial-and-error procedures. I believe that a fun
mental understanding of rubber friction and wear may h
in the design of new rubber compounds for tires and ot
rubber applications, e.g., wiper blades.

In the present paper I have presented a general theo
the hysteretic contribution to rubber friction. The theory h
been developed for rubber sliding on self-affine fractal s
faces, e.g., a tire on a road surface. I have shown that
stationary surfaces~or low sliding velocity!, and for typical
pressures in the contact area between a tire and a road
rubber will only make~apparent! contact with about 5% of
the road surface. On the longest length scale the contac
volves the largest road surface asperities~which are associ-
ated with the upper cutoff length in the fractal distribution
the substrate surface roughness!. However, in each such con
tact region the local pressure is large enough to squeeze
rubber into many of the smaller-sized ‘‘cavities.’’ I have d
veloped a contact theory which describes how the~apparent!
contact changes with the magnification.
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APPENDIX A: DERIVATION OF THE MATRIX M

In this Appendix, I present a short derivation of the m
trix M @see Eq.~3!#. Assume that a viscoelastic solid occ
pate the half spacez.0. On the surfacez50 of the solid
acts the stresss i5s3i , wheres i j is the stress tensor. W
write

s i~x,t !5E d2qdv s i~q,v!ei (q"x2vt)

5E dv s i~x,v!e2 ivt,

where

s i~q,v!5
1

~2p!3 E d2xdt s i~x,t !e2 i (q"x2vt),

s i~x,v!5
1

2p E dt s i~x,t !eivt.

The elastic displacement fieldui(x,z,t) satesfies the equatio
of motion,

r
]2u

]t2 5m̂“

2u1~m̂1l̂ !““"u, ~A1!

wherem̂ and l̂ are linear integral operators, e.g.,

m̂f~ t !5E
2`

`

dt8 m~ t2t8!f~ t8!,

wherem(t)50 for t,0 ~this is a result of causality!, but this
fact is not important for what follows. In what follows th
time-variable will always be Fourier transformed so that E
~A1! takes the form,

2rv2u5m~v!“2u1@m~v!1l~v!#““"u, ~A2!

whereu5u(x,z,v) and

m~v!5E
2`

`

dt m~ t !eivt,

and similarly forl(v). Wedefinethe complex elastic modu
lus E(v) and Poisson ration(v) via

nE

~11n!~122n!
5l,

E

11n
52m,

and the complex sound velocitiescT(v) andcL(v) via

cT
25

m

r
, cL

25
l12m

r
.

In the equations above, all quantities depend on the
quencyv.

Let us now solve the boundary value problem specifi
above. It is convenient to introduce the vectorn which points
along thez-axis, normal to the surface of the semi-infini
solid, and write the displacement field in the solid on t
form,
Downloaded 15 Dec 2004 to 134.94.160.89. Redistribution subject to AIP
t
l

-

.

e-

d

u5pA1KB1p3KC. ~A3!

Here A, B, andC are three scalar fields, andp52 i¹ and
K5n3p vector operators. Note thatK is an internal opera-
tor on the planez50, i.e., it involves only differentation
within the plane. Substituting Eq.~A3! in Eq. ~A2! results in
three scalar equations,

~v21cL
2¹2!A50, ~A4!

~v21cT
2¹2!B50, ~A5!

~v21cT
2¹2!C50. ~A6!

It is obvious from Eq.~A4! that A is associated with the
longitudinal displacement field andB and C with the two
transverse displacement fields. Note also that theKB-field is
parallel to thexy-plane. In the present case, the surface str
s i(x,t) will generate viscoelastic displacement waves wh
propagatesinto the solid. Thus the relevant solutions to Eq
~A4!–~A6! will have the form

A~x,z,t !5E d2qdv A~q,v!ei (q"x1pLz2 ivt), ~A7!

B~x,z,t !5E d2qdv B~q,v!ei (q"x1pTz2 ivt), ~A8!

C~x,z,t !5E d2qdv C~q,v!ei (q"x1pTz2 ivt), ~A9!

where

pT56S v2

cT
2 6 i e2q2D 1/2

, pL56S v2

cL
2 6 i e2q2D 1/2

,

where the1 and 2 sign refers tov.0 andv,0, respec-
tively, and wheree is an infinitesimal positive number, an
where the square-root function has its branch cut along
negative real axis.

Now, using the equation

s i j 5m̂~ui , j1uj ,i !1l̂uk,kd i j ,

gives

s i35njs i j 5m̂~n•¹ui1¹ in•u!1l̂ni¹•u.

Thus, writing 2 i¹5p, the boundary conditions3i(x,0,v)
5s i(x,v) takes the form

m~v!~n"pu1pn"u!1l~v!np"u52 i s~x,v!, ~A10!

whereu5u(x,0,v). Let us substitute Eq.~A3! in Eq. ~A10!.
We get

p~2pzA1K2C!1KpzB1p3KpzC1n~l/m!p2A

5~2 i /m!s. ~A11!

From Eq.~A11! we obtain three scalar equations by taki
the scalar producs with the three operatorsn, K , and pi

5(px ,py ,0). Note that all these operators are internal diff
ential operators on thexy-plane, which is necessary sinc
Eq. ~A11! is only valid on the planez50. We get

~2pz
21~l/m!p2!A12K2pzC5~2 i /m!n•s, ~A12!

K2pzB5~2 i /m!K•s, ~A13!
 license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



es
al

n

on
-

om
on

ions

e
e
-

in
ally

3854 J. Chem. Phys., Vol. 115, No. 8, 22 August 2001 B. N. J. Persson
pi
2~2pzA1K2C!2pz

2K2C5~2 i /m!pi•s. ~A14!

Using thatK25pi
2 and p2A5(v2/cL

2)A, and Fourier trans-
forming the x-dependence so thatpi→q, pzA5pLA, pzB
5pTB, andpzC5pTC, Eqs.~A12!–~A14! gives

~2pL
21~l/m!~v/cL!2!A12q2pTC5~2 i /m!n•s,

~A15!

q2pTB5~2 i /m!K•s, ~A16!

q2~2pLA1q2C!2pT
2q2C5~2 i /m!q•s. ~A17!

In these equationsA5A(q,v) and similar forB, C, ands,
and K5n3q[qe. We must now solve Eqs.~A15!–~A17!
for A, B, andC. From Eq.~A16! we get

B52
i

m

1

q2pT
K•s. ~A18!

From Eqs.~A15! and ~A17! we get

A52
i

mSF2pTq1S v2

cT
2 22q2DnG•s, ~A19!

C52
i

mSF2pLn2S v2

cT
2 22q2D 1

q2 qG•s, ~A20!

where

S5S v2

cT
2 22q2D 2

14q2pTpL .

Now, since

p3K5npi
22pzpi ,

we get from Eq.~A2!,

u~q,0,v!5KB1q~A2pTC!1n~pLA1q2C!, ~A21!

whereA5A(q,v) and similarly forB and C. Substituting
Eqs. ~A18!–~A20! in this equation gives foru(q,0,v)
[u(q,v),

u~q,v!5M ~q,v!s~q,v!,

where the matrix,

M52
i

rcT
2 S 1

S~q,v! FQ~k,v!~ ẑq2qẑ!

1S v

cT
D 2

~pLẑẑ1pTq̂q̂!G1
1

pT
eeD ,

whereq̂5q/q, e5 ẑ3q̂, and where

Q52q22v2/cT
212pTpL .

APPENDIX B: ELASTIC CONTACT THEORY FOR
RANDOMLY ROUGH SURFACES

In this appendix we will derive the functionP(z) intro-
duced in Sec. V. Let us first derive an equation for the str
probability distribution in the contact area on the length sc
L/z. We denote this function byP(s,z). Let us first assume
complete contact between the rubber and the substrate o
length scales. We have
Downloaded 15 Dec 2004 to 134.94.160.89. Redistribution subject to AIP
s
e

all

P~s,z!5^d~s2s1~x!!&, ~B1!

wheres1(x) is the stress which occur in a contact area
the length scaleL/z. Here^¯& stands for ensemble averag
ing, i.e., averaging over different realizations of the rand
processh(x). If s11Ds denotes the stress which occurs
the length scaleL/(z1Dz), then

P~s,z1Dz!5^d~s2s12Ds!&

5E ds8 ^d~s82Ds! d~s2s12s8!&

5E ds8 ^d~s82Ds!&P~s2s8,z!, ~B2!

where we have used that the averaging over different reg
in z are independent processes. We can write

^d~s82Ds!&5
1

2p E dw ^eiw(s82Ds)&. ~B3!

SinceDs is small we can expand to second order inDs to
get

^d~s82Ds!&5
1

2p E dw eiws8~12w2^Ds2&/2!. ~B4!

Note that^Ds2&}Dz. Substituting Eq.~B4! in Eq. ~B2! and
expanding the LHS to linear order inDz gives

P~s,z!1
]P~s,z!

]z
Dz5E ds8 P~s2s8,z!Fd~s8!

1
1

2

]2

]s82 d~s8!^Ds2&G .
Thus

]P

]z
5 f ~z!

]2P

]s2 , ~B5!

where

f ~z!5
1

2

^Ds2&
Dz

.

Note that

P~s,1!5P0~s!,

where we assume thatP0(s)5d(s2s0), corresponding to
a constant pressure in the nominal contact area.

Equation~B5! is a diffusion type of equation, where tim
is replaced by the magnificationz, and the spatial coordinat
with the stresss ~and where the ‘‘diffusion constant’’ de
pends onz!. Hence, when we studyP(s,z) on shorter and
shorter length scales~corresponding to increasingz!, the
P(s,z) function will become broader and broader
s-space. We can take into account that detachment actu
will occur when the local stress reachess50 ~we assume no
adhesion! via the boundary condition,

P~0,z!50.

If we multiply Eq. ~B5! with s and integrate overs we
get after some simplifications,
 license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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]

]z E0

`

ds sP~s,z!50

or

E
0

`

ds sP~s,z!5s0 . ~B6!

Next, integrating Eq.~B5! over s gives

]

]z E0

`

dsP~s,z!52 f ~z!
]P

]s
~0,z!

or

E
0

`

dsP~s,z!512E
1

z

dz8 f ~z8!
]P

]s
~0,z8!. ~B7!

Using Eqs.~27!, ~B6!, and~B7! gives

P~z!512E
1

z

dz8 f ~z8!
]P

]s
~0,z8!. ~B8!

Let us now calculatêDs2&. Using Eqs.~12! and ~19!
give after some simplifications,

^sz
2&5E d2q @Mzz~q,qxv !#21@Mzz~2q,2qxv !#21 C~q!

5
1

4 E dq q3C~q!E dfUE~qv cosf!

12n2 U2

,

or, sinceq5qLz,

f ~z!5
^Ds2&
2Dz

5
^Ds2&
2Dq

qL

5
1

8
qLq3C~q!E dfUE~qv cosf!

12n2 U2

.

Later we will need the functiong(z)5 f (z)/s0
2,

g~z!5
1

8
qLq3C~q!E dfUE~qv cosf!

~12n2!s0
U2

. ~B9!

Let us now solve Eq.~B5!. Let us first consider a slightly
more general problem, whereP(z) again satisfies Eq.~B5!,

]P

]z
5 f ~z!

]2P

]s2 ,

but with modified boundary conditions,

P~0,z!5P~sY ,z!50, ~B10!

P~s,1!5P0~s!5d~s2s0!. ~B11!

In the equations above we considerP(s,z) as defined only
for 0,s,sY . Later, we will takesY→`. The solution to
the equations above can be written as

P5 (
n51

`

An~z! sinS nps

sY
D . ~B12!

Substituting this in Eq.~B5! gives

dAn

dz
52 f ~z!S np

sY
D 2

An ,
Downloaded 15 Dec 2004 to 134.94.160.89. Redistribution subject to AIP
which is easy to integrate to get

An~z!5An~1! expF2S np

sY
D 2E

1

z

dz8 f ~z8!G .
Substituting this result in Eq.~B12! gives

P5 (
n51

`

An~1! expF2S np

sY
D 2E

1

z

dz8 f ~z8!GsinS nps

sY
D .

~B13!

Using

E
0

sY
ds sinS nps

sY
D sinS mps

sY
D5

sY

2
dnm ,

we get

An~1!5
2

sY
E

0

sY
ds P0~s! sinS nps

sY
D5

2

sY
sinan ,

~B14!

where

an5
nps0

sY
[ss0 , ~B15!

where we have defineds5np/sY . Substituting Eq.~B14! in
Eq. ~B13! gives

P5
2

sY
(
n51

`

sinan

3expF2S np

sY
D 2E

1

z

dz8 f ~z8!GsinS nps

sY
D . ~B16!

Let us now consider the limitsY→`. In this case we can
replace

(
n51

`

→E
0

`

dn5
sY

p E
0

`

ds,

so that Eq.~B16! reduces to

P5
2

p E
0

`

dssin~ss0! expF2s2 E
1

z

dz8 f ~z8!Gsin~ss!.

Now, let us consider

J5E
1

z

dz8 f ~z8!
]P

]s
~0,z8!

5
2

p E
0

`

ds ssin~ss0!E
1

z

dz8 f ~z8!

3expF2s2E
1

z8
dz9 f ~z9!G . ~B17!

But note that

E
1

z

dz8 f ~z8! expF2s2E
1

z8
dz9 f ~z9!G

5
1

s2 S 12expF2s2E
1

z

dz8 f ~z8!G D . ~B18!

Substituting Eq.~B18! in Eq. ~B17! and using that
 license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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2

p E
0

`

ds
sin~ss0!

s
51,

gives

J512
2

p E
0

`

ds
sin~ss0!

s
expF2s2E

1

z

dz8 f ~z8!G .
Thus,

P~z!512J5
2

p E
0

`

ds
sin~ss0!

s

3expF2s2E
1

z

dz8 f ~z8!G .
Finally, let us defineg(z)5 f (z)/s0

2 and introducex5ss0 .
Thus,

P~z!5
2

p E
0

`

dx
sinx

x
expF2x2E

1

z

dz8 g~z8!G , ~B19!

whereg(z) is given by Eq.~B9!.

APPENDIX C: ELASTOPLASTIC CONTACT THEORY
FOR RANDOMLY ROUGH SURFACES

In Sec. V and Appendix B we have considered the a
of real contact when an elastic body was squeezed agai
hard rough surface. We assumed only elastic deformation
this Appendix we consider the more general case when b
elastic and plastic deformations occur. We consider two
ferent cases, where the solids have~a! nominally flat surfaces
as in Fig. 19~a! ~e.g., a rectangular block on a flat substrat!,
where the macroscopic contact pressures0 is constant, and
~b! a curved surface as in Fig. 19~b! ~e.g., an elastic spherica
ball squeezed against a nominally flat substrate!, where the
macroscopic pressure,s0(x), depends onx.

1. Nominally flat surface

Consider a rectangular block on a nominally flat su
strate. We define the average~or macroscopic! pressures0

5FN /A0 , where A05L2 is the ~apparent! block-substrate
contact area on the length scaleL, the linear size of the
block. Thus, the macroscopic pressure distributionP0

5d(s2s0).
We assume that plastic yield occurs when the local p

sure reachess5sY ~the yield stress!. In this case, for 0
,s,sY , the stress probability distributionP(s,z) satisfies
Eq. ~B5!,

FIG. 19. ~a! A rectangular block and~b! a spherical ball, squeezed agains
rough substrate.
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]P

]z
5 f ~z!

]2P

]s2 , ~C1!

with

P~0,z!5P~sY ,z!50,

P~s,1!5P0~s!,

whereP0(s) is assumed to correspond to a constant mac
scopic contact pressureP0(s)5d(s2s0). Note that
P(s,z) is defined only for 0,s,sY . In Appendix B we
considered the limitsY→`, but we now keepsY ~the yield
stress! finite.

In Appendix B we have shown that

P~s,z!5
2

sY
(
n51

`

sinan

3expF2an
2E

1

z

dz8 g~z8!GsinS nps

sY
D , ~C2!

where

an5
nps0

sY
.

Now, let us introduce the functionsPnon(z) and Ppl(z)
which describe the fraction of the original~for z51! macro-
contact area where, under the magnificationz, noncontact,
and contact with plastic yield has occurred, respective
Thus we have

Pel~z!1Pnon~z!1Ppl~z!51, ~C3!

wherePel(z)5P(z) was introduced in Appendix B and de
scribed the fraction of the macrocontact area where ela
contact occur on the length scaleL/z. We have shown in
Appendix B that

Pnon~z!5E
1

z

dz8 f ~z8!
]P

]s
~0,z8!. ~C4!

In a similar way one can show that

Ppl~z!52E
1

z

dz8 f ~z8!
]P

]s
~sY ,z8!. ~C5!

With these definitions it is easy to prove that the probabi
conservation law~C3! is satisfied. First note that the averag
stresŝ s&z in the elastic contact area must be such that
total load is independent of the magnificationz. Thus

^s&zA0Pel~z!1sYA0Ppl~z!5s0A0

or

^s&zPel~z!5s02sYPpl~z!. ~C6!

If we multiply Eq. ~C1! with s and integrate overs we get
after some simplifications,

]

]z E0

sY
ds sP~s,z!5 f ~z!sY

]P

]s
~sY ,z!

or
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E
0

sY
ds sP~s,z!5s01sYE

1

z

dz8 f ~z8!
]P

]s
~sY ,z8!

5s02sYPpl~z!.

Next, integrating Eq.~C1! over s gives

]

]z E0

sY
dsP~s,z!52 f ~z!F]P

]s
~0,z!2

]P

]s
~sY ,z!G

or

E
0

sY
dsP~s,z!512E

1

z

dz8 f ~z8!F]P

]s
~0,z8!2

]P

]s
~sY ,z8!G

512Pnon~z!2Ppl~z!.

Thus

^s&z5E
1

z

ds sP~s,z!Y E
1

z

ds P~s,z!

5
s02sYPpl

12Pnon2Ppl
.

Substituting this in Eq.~C6! gives

Pel~z!512Pnon~z!2Ppl~z!.

Using Eqs.~C2!, ~C4!, and~C5! we get

Pnon5
2

p (
n51

`
sinan

n S 12expF2an
2E

1

z

dz8 g~z8!G D ,

~C7!

Ppl52
2

p (
n51

`

~21!n
sinan

n

3S 12expF2an
2E

1

z

dz8 g~z8!G D . ~C8!

Note that whenz→`,

Pnon1Ppl→
4

p (
n51,3,5, . . .

sinan

n
51,

independent ofs0 /sY , while

Ppl→2
2

p (
n51

`

~21!n
sinan

n
5

s0

sY
.

Thus, in the absence of a short-distance cutoff, at s
length scale the local stress in the contact area equalssY ,
i.e., each junction is in a state of incipient plastic flow. W
note, however, that under such conditions thermally activa
creep motion will be very important, and the area of re
contact will increase slowly with the time of stationa
contact.39,40 This effect has a profound influence on frictio
dynamics~e.g., it is now believed to be the origin of eart
quakes! but will not be discussed further here.

In the derivation above,z51 correspond to the macro
scopic sizeL of the system. But, as mentioned earlier@see
Fig. 8~b!#, sometimes there is a cut off inC(q) at some wave
vector q0.2p/L. In that case it is convenient to letz51
correspond to the length scalel052p/q0 . Before treating
Downloaded 15 Dec 2004 to 134.94.160.89. Redistribution subject to AIP
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this case, let us summarize the results above inq-space (q
5qLz). Equations~C7! and ~C8! take the form,

Pnon5
2

p (
n51

`
sinan

n
~12exp@2an

2G~q!# !, ~C9!

Ppl52
2

p (
n51

`

~21!n
sinan

n
~12exp@2an

2G~q!# !,

~C10!

where from Eq.~37!,

G~q!5
1

8 Eq0

q

dq q3C~q!E
0

2p

dfUE~qv cosf!

s0~12n2!
U2

. ~C11!

Now, assume zero sliding velocity and a self affine fra
tal surface, withC(q)50 for q,q0 . Writing q5q0z we get
from Eq. ~32!,

S ps0

sY
D 2

G~q0z!5
H

12H S pEq0h0

4~12n2!sY
D 2

~z2(12H)21!.

For metals this formula should be~approximately! valid also
for nonzero sliding velocities, since the elastic modul of m
als depend much more weakly on the frequency than
rubber. Note that the functionsPel , Ppl , andPnon depend on
H ~or, equivalently, on the fractal dimensionD f532H!, on
s0 /sY , and on theplasticity indexc5(E/sY)q0h0 . In Fig.
20 we show the dependence ofPel andPpl of the magnifica-

FIG. 20. The functions~a! Pel and ~b! Ppl describes the fraction of the
macroscopic contact area where elastic and plastic contact occur, whe
system is studied at different magnificationsz. For H50.8, q05104 m21,
and q0h050.001 ~solid lines! and q0h050.01 ~dashed lines!. Results are
shown for E51011 Pa, sY5109 Pa, ands05104 Pa. Note that in the
present casez51 correspond to the length scalel052p/q0'1 mm so that
the logz,0 correspond to length scalesl.l0 , and on these length scale
the solid block makes~apparent! contact with the substrate over the who
block–substrate interface@see Fig. 19~a!#.
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tion z. We have used parameters which correspond~roughly!
to a cubic steel block (L510 cm), on a steel substrate. W
assumes05104 Pa, sY5109 Pa, andE51011Pa. The sur-
face roughness of the substrate is assumed to be self a
fractal with q0h050.001 ~solid lines! and 0.01 ~dashed
lines!. The theory does not depend onq0 directly ~but only
on the productq0h0!, but if we choose the cutoff wave vec
tor q05104 m21 ~corresponding to the typical cutoff lengt
l052p/q0 of order '1 mm!, then q0h050.001 and 0.01
correspond to the rms roughnessh050.1 and 1mm, respec-
tively. In the calculations we have used the fractal expon
H50.8. Note that for the caseq0h050.01 plastic deforma-
tion starts already at the cutoff lengthl0'1 mm, and on the
length scalel0/10'0.1 mm all junctions have yielded plas
tically. However, whenq0h050.001 plastic yield start when
z is of order a few 1000, corresponding to distances of or
l0 /z'0.1mm. On the lengthl'20 Å ~corresponding toz
'33105! all asperities have yielded plastically. Howeve
on this short length scale steel may be much harder than
macroscopically observed yield stress;5 thus, for ‘‘real’’ steel
mainly elastic deformation is likely to prevail whenq0h0

50.001.
One can easily estimate analytically the characteri

length scalel0 /z, at which, say;50% of the junctions have
yielded plastically. According to Eq.~C8! this is the case
when

S ps0

sY
D 2

G~q0z!5
H

12H S Eq0h0p

4~12n2!sY
D 2

~z2(12H)21!

'1

or

z'F11
12H

H S sY4~12n2!

Eq0h0p D 2G1/[2(12H)]

, ~C12!

which, in the present case, givesz'1 and 104 for q0h0

50.01 and 0.001, respectively, in relative good agreem
with Fig. 20.

Surfaces for engineering applications usually experie
repeated sliding over the same area. Thus, for surfaces
large surface roughness, after repeated sliding the sur
asperities will be smoothened out~by plastic deformation!,
and, finally, mainly elastic deformation will occur in the co
tact areas. The present theory can be used to estimate
length scale on which the initial plastic deformation occu
~see above!.

Let us consider the ‘‘elastic limit’’s0 /sY→0, where
Ppl50. In this case we can treatan5x as a continuous vari
able so that

Pel512Pnon5
2

p E
0

`

dx
sinx

x
exp@2x2G~q!#.

Since in most cases of interest~see Appendix B! G(q)@1
we get

Pel'
2

p E
0

`

dx exp@2x2G~q!#5@pG~q!#21/2.

If we assume a frequency independent elastic modulus,
Eq. ~37! gives
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G~q0z!5
~q0h0!2E2

8s0
2~12n2!2

H

2~12H !
~z2(12H)21!,

so that

Pel'
4s0~12n2!

q0h0E S 12H

pH D 1/2

zH21,

where we have assumedz@1. But s05FN /A0 so that the
~apparent! area of contact on the length scalel ~where z
5l0 /l! becomes

A~l!5A0Pel~z!5
4FN~12n2!

q0h0E S 12H

pH D 1/2S l

l0
D 12H

.

~C13!

If l05L we getq052p/L and

A~l!5
2FNL~12n2!

pEh0
S 12H

pH D 1/2S l

L D 12H

. ~C14!

Note that the contact areaA(l) is proportional to the load,
and that it decreases continuously towards zero asl→0. If
the upper cut off lengthl0 is independent of the sizeL of the
system, then the area of contactA(l) is also independent o
L @see Eq.~C13!#. However, ifl05L then the area of con
tactA(l) depends on the sizeL of the system, increasing a
;LH with increasingL.

Finally, let us compare the prediction of the prese
theory with the contact theory of Greenwood. In the lat
theory the surface is assumed to be covered by asper
with identical radius of curvature,R, and with a Gaussian
hight distribution with the rms widthh1 . We can~approxi-
mately! describe this case by assuming a surface with rou
ness only on a single lateral length scalel152p/q1 . We
take

C~q!5@^h2&/2pq1#d~q2q1!

so that

E d2q C~q!5^h2&[h1
2.

Note that if q152p/l1 , then the asperity curvature 1/R
'q1

2h1 , and the asperity hight fluctuationD5h1 so that
(D/R)1/2'q1h1 . The contact area in the Greenwood theo
is of order (D/R)21/2(FN /E)'(q1h1)21(FN /E). We will
now show that essentially the same result follows from
present theory. Using Eq.~C11! we getG(q)50 if q,q1

and

G~q!5
~q1h1!2E2

8s0
2 ~12n2!2[G0

for q.q1 . The fraction of the areaA0 where contact occurs
is given by

P5Pel1Ppl5
s0

sY
1

2

p (
n51

`
sinan

n
e2an

2G. ~C15!

In the elastic limits0 /sY→0 we can treatx5an as a con-
tinuous variable, so that Eq.~C15! gives P(q)51 for q
,q1 , while
 license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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P5
2

p E
0

`

dx
sinx

x
e2x2G0

'
2

p E
0

`

dx e2x2G05~pG0!21/2

for q.q1 . Here we have assumed thatG0@1. ThusA(l)
5A0 for l.l1 , while for l,l1 ,

A~l!5A0

s0

E

~12n2!

q1h1
S 8

p D 1/2

.

Sinces0A05FN the normal load, we get

A~l!5
FN~12n2!

q1h1E S 8

p D 1/2

for l,l1 , which, except for a factor of order unity, is iden
tical to the results of Greenwood.17 Note, in particular, that
the area of real contact isproportional to the load. However,
in contrast to the case of self affine fractal surfaces,A(l)
does not depend onl ~for l,l1!.

Next, let us consider the fraction of the contact ar
where plastic yield has occurred. As before, we expect ab
50% of the contact area to have yielded plastically when

S ps0

sY
D 2

G0'1

which gives

c5Eq1h1 /sY'1,

which, within a factor of order unity, is the same result
derived from the Greenwood theory.

2. Curved surface

Assume now that an elastic body with a nomina
curved surface, e.g., a ball, is squeezed against a nomin
flat substrate. In this case the macroscopic pressure in
contact region,s0(x), will vary with the spatial locationx,
from a maximum at the center to zero at the periphery. If
long-distance cut offl0 is much shorter than the diameter
the contact area, the theory presented above is still val
the pressures0→s0(x). Thus, in this case the function
Pel(z,x) andPpl(z,x) will depend onx.

APPENDIX D: COMMENTS ON CONTACT THEORIES

Roux et al.15 derived the relation~2! by scaling argu-
ments as follows. Assume, for simplicity, that one of t
surfaces is flat and elastic, while the other is rigid and ha
self affine fractal surface profile. Let us rescale the spa
coordinates,x→zx, y→zy, and z→zHz and note that the
surface is statistically invariant under this operation. T
contact areaA→z2A as it lies in the (x,y) plane. The local
perpendicular deformationu of the surface must rescale a
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u→zHu, sinceu ‘‘points’’ in the z-direction. Since the nor-
mal surface stresss is related to the perpendicular surfac
displacementu via

u5E d2x8 K~x2x8!s~x8!,

where, from dimensional arguments,K;1/ux2x8u, it fol-
lows that s→zH21s under rescaling. Thus, the total loa
FN5As→z11HFN . Assuming FN;An this gives An

→z11HAn. On the other hand we know thatA→z2A which
gives An→z2nAn. Thus, 2n511H which gives Eq.~2!.
This result differs from the conclusion arrived at in this p
per. However, the argument given above neglects the up
l0 and lowerl1 cutoff lengths, which occur in all real sys
tems. If there would be no low distance cutoff, the calcu
tions presented in this paper predict that the area of
contact vanishes. This is easy to understand physically
follows: Let us first consider the system on the length sc
l0 , the upper cutoff length. On this length scale the syst
makes ~apparent! contact with the substrate over an ar
A(l0) ~see Fig. 4!. Let us now study an asperity contact ar
under increasing magnification. If we magnify by a factor
z510 then we will observe smaller sized ‘‘asperities’’ an
‘‘cavities.’’ In general, the local pressure will not be larg
enough to fill out all the cavities so the area of contact on
length scalel,l0 will be smaller than the~apparent! area of
contact on the length scalel0 ~see inset in Fig. 4!. This
process will repeat itself as we increase the magnifica
further, and the area of~apparent! contact will continue to
decrease with increasing magnification. If there is no sh
distance cutoff the area of contact will decrease towards z
as the magnificationz→`.

We note that the arguments presented by Roux do
exclude that the area of real contact may vanish, but in
case the analysis is itself irrelevant. Assume now that a s
distance cutoffl1 exist. Let us consider the system und
increasing magnification. We have to distinguish betwe
two different cases. If the local stress which acts in the c
tact area reaches the yield stresssY of the softer of the two
solids before we have reached the cutoff length scalel1 ,

FIG. 21. The kinetic friction coefficient of rubber sliding on a rough, ha
substrate~schematic!.
 license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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then plastic deformation will occur everywhere in the areaA
of real contact, andA will be simply determined by the load
and the yield stresssY via the standard relationFN5sYA.
Thus, in this case the area of real contact is proportiona
the load. On the other hand, if the short-distance cut-of
reached before the local stress has reached the yield s
sY , then we expect mainly elastic deformation, but in th
case too the area of real contact will be~nearly! proportional
to the load~see Appendix C!.
n
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-
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APPENDIX E: RUBBER FRICTION AT HIGH SLIDING
VELOCITY

In this Appendix, I study the friction at high sliding ve
locities, where emission of sound waves from the slidi
interface contributes in an important manner to the fricti
force. For high sliding velocities we cannot perform the e
pansion~11! but we have to use the full expression forMzz

given by Eq.~10!,
Mzz5
2 i

rcT
2

pL

S~q,v! S v

cT
D 2

5
2 i

rcT
2

S v

cT
D 2F S v

cL
D 2

2q21 i01G1/2

F S v

cT
D 2

22q2G2

14q2F S v

cL
D 2

2q21 i01G1/2F S v

cT
D 2

2q21 i01G1/2. ~E1!
-

r. A

hi,

ech.

on,
Using this expression in the formulas derived in Secs. IV a
V gives the friction coefficient for arbitrary sliding velocity
Here we consider only the limit whenv5vqx→`, where

Mzz;
2 i

rcLv
. ~E2!

This equation is valid ifv@cL . For very high velocities we
are the the glassy region wherecL can be treated as a con
stant~i.e., independent ofv). Of course, in reality we expec
that high sliding velocity will result in high local temperatu
at the interface, and to large wear, but we neglect these
fects in the present model study. Substituting Eq.~E2! in Eq.
~18! gives after some simplifications,

s f5pvrcLE dq q3C~q!P~q!. ~E3!

Thus, if P(q) would be a constant, the friction coefficien
would increase linearly with the sliding velocityv. However,
using Eq.~E2! and the equations in Appendix B, it is easy
show that, if only elastic deformation occur, in the pres
case

P~q!'@pG~q!#21/25
s0

prcLv F1

2 EqL

q

dq q3C~q!G21/2

.

Substituting this in Eq.~E3!, usingm5s f /s0 , and assuming
that C(q) is given by Eq.~35! gives ~if q1@q0!

m'q0h0S 2H

p~12H ! D
1/2F S q1

q0
D 12H

21G ,
so thatm(v) is velocity independent for very largev. Thus,
neglecting temperature effects and wear processes, we e
m(v) for rubberlike materials to have the qualitative for
shown in Fig. 21.
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