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Theory of rubber friction and contact mechanics
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When rubber slides on a hard, rough substrate, the surface asperities of the substrate exert oscillating
forces on the rubber surface leading to energy “dissipation” via the internal friction of the rubber.

| present a discussion of how the resulting friction force depends on the nature of the substrate
surface roughness and on the sliding velocity. | consider in detail the case when the substrate surface
has a self affine fractal structure. | also present a theory for the area of real contact, both for
stationary and sliding bodies, with elastic or elastoplastic properties. The theoretical results are in
good agreement with experimental observation. 2@1 American Institute of Physics.
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I. INTRODUCTION the contact area. These so called Schallamach Wacesir
mainly at “high” sliding velocity and for very smooth sur-

The nature of the friction when rubber slides on a hardfaces, but will not be considered further in this paper.
substrate is a topic of considerable practical importance, e.g., In three earlier papers we have studied both the adhesion
for the construction of tireSwiper bladed, and in the cos- and hysteretic components of rubber frictfor?.Other stud-
metic industry. Rubber friction differs in many ways from jes of this topic are presented in Refs. 1, 7-9; reference 4
the frictional properties of most other solids. The reason foiconsidered only the interaction between a flat rubber surface
this is the very low elastic modulus of rubber and the highand a single surface asperityr many identical asperitigsin
internal friction exhibited by rubber over a wide frequency Ref. 6 we studied the hysteretic contribution to the friction
region. for viscoelastic solids sliding on hard substrates with differ-

The pioneering studies of Groschave shown that rub- ent types of(idealized surface roughness.
ber friction in many cases is directly related to the internal  In this paper | develop a theory of rubber friction when a
friction of the rubber. Thus experiments with rubber surfacesubber block is slid over a hard rough surface, with rough-
sliding on silicon carbide paper and glass surfaces give fricness on many different length scabesThe theory is valid
tion coefficients with the same temperature dependence dsr arbitrary (randon) surface roughness, but explicit results
that of the complex elastic modull& ) of the rubber. In  are presented for self affine fractal surface profife€.Such
particular, there is a marked change in friction at high speedsurfaces “looks the same” when magpnified by a scaling fac-
and low temperatures, where the rubber’s response is driveor ¢ in thexy-plane of the surface and by a factdt (where
into the so-called glassy region. In this region, the friction0<H<1) in the perpendiculaz-direction. | note that many
shows marked stick-slip and falls to a level@f0.4, which  materials of practical importance hav@pproximately self-
is more characteristic of plastics. This proves that the frictioraffine fractal surfaces. Thus, for example, road surfaces and
force under most normal circumstances is directly related tohe surfaces of many cleaved brittle materials tend to be self
the internal friction of the rubber, i.e., it is mainlylaulk  affine fractal with the fractal dimensioD;=3—-H~2.2
property of the rubbe? —2.5. In practice there is always a low&r,, and upperig,

The friction force between rubber and a rou@tard cutoff length, so that the surface is self-affine fractal only
surface has two contributions commonly described as thehen viewed in a finite length scale interval<A <\,. For
adhesion and hysteretic components, respectivhe hys-  surfaces produced by brittle fracture, the upper cut off length
teretic component results from the internal friction of the\ is usually identical to the lateral side of the fracture
rubber: during sliding the asperities of the rough substratsurface. This seems also to be the case for many surfaces of
exert oscillating forces on the rubber surface, leading to cyengineering importancésee, e.g., Ref. 24 However, for
clic deformations of the rubber, and to energy “dissipation” road surfaces the upper cutoff, is of order a few mm,
via the internal damping of the rubber. This contribution towhich corresponds to the size of the largest sand particles in
the friction force will therefore have the same temperatureghe asphalt. Less is known about the short distance cnioff
dependence as that of the elastic mod#(®) (a bulk prop-  but | will argue later that in the context of rubber friction it
erty). The adhesion component is important only for cleanmay be taken to be of order a fewm, so that the length

and relative smooth surfaces. scale region over which the road surface may be assumed to
Because of its low elastic modulus, rubber often exhibitbe fractal may extend over 3 orders of magnitude.
elastic instabilities during sliding. The most well-known in- When rubber slides on a hard rough surface with rough-

volves the compressed rubber surface in front of the contagtess on the length scalasit will be exposed to fluctuating
area undergoing a buckling which produces detachmerforces with frequenciem~uv/\. Since we have a wide dis-
waves which propagate from the front-end to the back-end afribution of length scaled ;<\ <\y, we will have a corre-
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FIG. 2. Rubber sliding on a substrate with roughness on two different length
A scales. The rubber is able to fill-out the long-wavelength roughness profile,
but it is not able to get squeezed into the small-sized “cavities” at the
bottom of a big cavity.

()
ness of different length scale contribute equally to the fric-
[ wsmall” A tion force if the ratio between the amplitude and wavelength
sma - is constant Thus, roughly speaking, we may state that sur-

“large” A face roughness of all length scales are equally important. Of
course, the different wavelength contributionsgév) will
peak at different sliding velocitiggletermined by /\ ~1/7),

i.e., the different wavelength contributions te(v) are
shifted relative to each other along theaxis, see Fig. ().

We may summarize these results by writinge
=f(v7/\,h/IN).

These profound results imply that it is very important
not to a priori exclude any roughness length scale from the
FIG. 1. Rubber(dotted 'are.hsliding on'a_hard corrug;ted substrate: The analysis. The distribution of different length scabeswill
e s o e a1 broaden theu(v) curve, and also increase the peak max:
and the wavelength of the corrugation is the sarge.shows theu(v) ~ MUM. However, let us note the following: Consider a surface
curves for the roughness profiles (@ and (b) (schematig. with surface roughness on two different length scales as in-

dicated in Fig. 2. Assume that a rubber block is squeezed

against the substrate and that the applied pressure is large
sponding wide distribution of frequency components in theenough to squeeze the rubber into the large “cavities” as
Fourier decomposition of the surface stresses acting on thiedicated in the figure. It is clear that even if the rubber is
sliding rubber block. The contribution to the friction coeffi- able to make direct contact with the substrate in the large
cient u from surface roughness on the length seglaill be  cavities, the pressure acting on the rubber at the bottom of a
maximal whenv/\~1/7, where 1f is the frequency where large cavity will be much smaller than the pressure at the top
Im E(w)/|E(w)| is maximal, which is located in the transition of a large asperity. Thus while, because of the high local
region between the rubbery regi@ow frequenciesand the  pressure, the rubber may be squeezed into the “small” cavi-
glassy region(high frequencies We can interpret IYas a ties at the top of a large asperity, the pressure at the bottom
characteristic rate of flips of molecular segmefusnfigura-  of a large cavity may be too small to squeeze the rubber into
tional changes which are responsible for the visco-elastic the small-sized cavities at the bottom of a large cavity.
properties of the rubber. Since the flipping is a thermallyHence, during sliding the small-scale roughness may give a
activated process it follows thatdepends exponentialifor ~ contribution to the pulsating deformations of the rubtzard
fastey on the temperature~exp(AE/kgT), whereAE is the  hence to the friction forge only at the top of the big asperi-
barrier involved in the transition. In reality, there is a wide ties. This important fact is taken into account in the analysis
distribution of barrier height?AE and hence of relaxation presented in this paper. Thus,A{\) is the (apparentarea
times 7, and the transition from the rubbery region to theof contact on the length scale [more accurately, Hefine
glassy region is very wide, typically extending over 3 ordersA(\) to be the area of real contact if the surface would be
of magnitude in frequency. smooth on all length scales shorter tharsee Fig. 3 then |

The following observation is of great importance for will study the functionP(¢)=A(N)/A(L) which is the rela-
rubber friction. Consider the contribution to the rubber fric- tive fraction of the rubber surface area where contact occurs
tion from surface roughness of different wavelengttand on the length scale.=L/{ (where {=1), with P(1)=1.
amplitudeh, see Fig. 1. If we assume that the applied presHere A(L)=A; denotes the macroscopic contact afreas
sure is so high that the rubber is squeezed into completthe diameter of the macroscopic contact area so A&
contact with the substrate, it follows from dimensional argu-~L?]. | will show that for an ideal elastic bodno plastic-
ments that the magnitude of the hysteretic contribution to théty) squeezed against a rigid self affine fractal surface with-
friction coefficient only depends am\, i.e.,surface rough- out a short-distance cut off({) —0 as{—o. This result is

\
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FIG. 4. Elastic contact between a flat rubber surface and a hard solid sub-
PO = AQYAL) strate. The surface is assumed to be self-affine fractal with an upper cutoff
No<L. The system is shown on the length sceje Increasing the magni-

FIG. 3. A rubber ball squeezed against a hard, rough, substrate. Left: thication shows that within atapparent contact area, the rubber will only

system at two different magnifications. Right: the area of comda on ~ Make partial contact with the substrdee text

the length scale\ is defined as the area of real contact when the surface

roughness on shorter length scales thdras been removele., the surface

has been “smoothened" on length scales shorter tan wide roughness size region. A self-affine fractal surface has
the property that if we make a scale change that is different

. . . f h directi h h f h i
very important, because it shows that even without any shortOr each direction, then the surface does not change its

distance cut off it is possible for the sliding friction force to morphology; see F.Ig' 4. Thus, the sta.tlstlcal propertlgs of
S . . ) the surface are invariant under the scaling transformation,
remain finite, since the rubber will not make contact with

experience the very short-wavelength surface roughness. x—{x, y—{ly, z—{"z (1)
Note that the longest roughness wavelength possible are
order~L. This correspond to the wave vectmr=2=/L. If
we defineq=q, ¢, we can consideP({)=P(qg/q,) as a

%here the exponer can be related to the fractal dimension
via D;=3—H. Since we expect 2D;<3 it follows that
0<H<1. Recent studies have shown that asphalt road tracks

func_‘lqrc]).n ofg; | dfenote this fgnlcuon byaég) fc;r.3|.mpl|(gty. are (approximately self-affine in a finite surface roughness
indi |sdpa:3per olculses mainly on ru her r|ctf|on, ut, 3Sinterval, with an upper cut-off of order a few mih.
Indicated above, | also present a new theory of contact me- g ger 1o study rubber friction on a hard self-affine

chanics(see Appendices B and)Gralid for randomly rough fractal surface, it is first necessary to be able to describe the

(e.9., self-affine fractalsurfaces. In the context of rubber contact mechanics. A simple model of contact mechanics for

frlck?on, malrtllg elastic deforma:on will (r)]ccur n thr? fractal-like surfaces was studied as early as 1957 by
substrate—rubber contact areas. However, the contact theogy, - 11314 Lo showed that the area of real contécis

developed in this paper can also be applied when both elas%earl;) proportional to the loador normal force, A~F .

and plastic deformation occur in the contact areas. This Casy 4 recent series of papers by Raebal ® and Bhushan and

IbSérOf course, relevant to almost all materials other than rUbE:o-workersl,6 it is claimed that for self-affine surfaces the

: . . area of real contact depends nonlinearly on the load. Assum-
This paper is organized as follows: In Secs. Il and I, |

i , ing only elastic deformation they found
present some basic results related to self-affine fractal sur-g y y

faces and contact theories, which form a necessary back- A~F2AH - or Fy~ARTH2, (2

ground for the theory developed in Secs. IV_and V. _In S_eCSinceH<1 (H=1 correspond t®;=2), these theories pre-
IV, I derive a general formula for the hysteretic contribution dict that the area of real contact increases faster than linear

to rubber friction. This formula contains the functi¢t({) with the load. This is usually not observed experimentally. In

introduced above, which is derivgd in Sec. V and Appendi%y opinion, the theories of Roust al. and of Bhushan and
B for randomly roughle.g., self-affine fractalsurfaces. Sec- co-workers are based on questionable assumptisze Ap-

tion VI contains numerical results for the velocity dependentpendix D. The contact theory developed in this papeee
friction coefficient. Section VII presents some general Com'Appendicés B and CpredictA~Fy, unless the loaFy is

ments aboufc rubber f“C“OT" and Sec. Vil is the summaryg, large that the contact aréais close to the nominal con-
and conclusion. In Appendix C, | present a new contact Me,ct areal,

chanics theory for randomly rough surfaces, when both elas- In the theory developed in this paper, the friction coeffi-

tic and _plastic deformation oceurs in the contact areas, Rient is given by a sum over different length scales. Now in
Appendix E, | study the contribution to rubber friction from ., ¢ases the upper limit in the sum is quite obvious. For
the emission of elastic waves from the sliding interface. example, for an asphalt road track the upper cutoff is of the
order of a few mm(the typical grain sizesas observed in
surface profile measurements. In a recent measurement, an
asphalt road surface was observed to be a self-affine fractal
It has been found that many “natural” surfaces, e.g.,down to the shortest length-scale studi@pproximately
surfaces of many materials generated by fracture, can be ap-03 mm.2 The short distance cutoff in the sum over length
proximately described as self-affine surfaces over a rathescales may, however, not be determined by the intrinsic cut-

Il. SELF-AFFINE FRACTAL SURFACES AND
CONTACT THEORIES
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FIG. 5. Influence of contamination on the rubber—substrate interaction.
Contamination particle&), or trapped liquid(b), will inhibit the rubber to FIG. 6. The kinetic friction coefficient for rubber sliding on a carborundum
get squeezed into the small sized surface cavities. surface under different conditiorffom Ref. 19.

off of the fractal nature of the surfagevhich could be an tact theory, which form a necessary background for the
atomic distancg but by surface contaminatidf!® (or com- ~ theory presented in Secs. IV, V, and Appendices B and C.
pressed air pockets in small sized cavitiesr by a thin Consider f|rst a flat. rupber surfag:e sq_ueezed against a
“skin” on the rubber surface with strongly modified proper- hard surface with a periodic corrugation with wavelenyth
ties. For example, if the rubber surface is covered by smand amplitudeor heigh h; see Fig. 7. IfA, is the nominal
(uniformly sized dust particlege.g., talc or carbon or silica Ccontact aredi.e., the area of thébottom surface of the
particles from the fillers, or pulverized stone from a road, orfubber block, andFy the load, then we define the average
carbon particles from the automobile exhautiien the low  Perpendicular stres@r pressurg oo=Fy/Aq. Let us now
distance cutoff is obviously determined by the particle sizeStudy under which conditions the lod,, and the rubber—
[see Fig. %a)], since the particle covered rubber surface canSubstrate adhesion forces, are able to deform the rubber so
not penetrate into surface cavities smaller than the typicalhat it comes in direct contact with the substrate over the
particle diameter. In fact, it is known that the tire-road fric- Whole surface areah, [Fig. 7(b)], i.e., under which condi-
tion increases when a road surface has dried up after a strofigns the rubber is able to deform and fill out all the surface
rain fall. Presumably, the rain washes away contaminationcavities” of the substrate. -

particles from the roadand tire surface. On the other hand, Assume first that a uniform stressacts within a circular

if the surface is covered by water or some other “lubrica-area(radius R) centered at a poinP on the surface of a
tion” fluid (e.g., oil or grease which fills out the small sur-

face cavities, then the low distance cutoff will be determined

by the smallest asperities which can penetrate above the con _(a). O

tamination layef{Fig. 5b)]. Thus, the contamination layer .. [ .- - 7 - Trubber -l T Tl - I

will remove the contribution to the energy dissipation from = .- - .7 - (- . - . PR
the small surface asperities and cavities, and reduce the fric: S o R
tion force. This effect is illustrated in Fig. 6 with experimen-
tal results for a rubber block sliding on dry cleétashed
line), dusted(dashed—dotteédand wet(solid line) carborun- hard substrate

dum stone surfaces. The figure also show results for wet

surfaces with an adde®%) detergent. Robe%has shown )

that polar substances like soaps prevent direct contact be

tween track and rubbdgsee Sec. VI, this explain why the )

friction is slightly lower for the wet+5% detergent case, < - .7~ w20 ST <.
compared to the wet, clean carborundum surface. - RN R S

Ill. AREA OF REAL CONTACT: QUALITATIVE
DISCUSSION

| have already emphaSIZed the |mportance Of. I(nOV\”m‘?FIG. 7. A rubber block squeezed against a substrate with a cosines corru-
the .nature Of. the area of r?al contact when 'dlscussmg rl"bb‘:'gfation. In(a) the applied pressure is too small to squeeze the rubber into
friction. In this section, | discuss some basic results of coneomplete contact with the substrate, while(in it is high enough to do so.
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semi-infinite elastic body with the elastic modulds This  sliding we must take into account that the elastic mod&us
will give rise to a perpendicular displacemantof P by a  depends on the perturbing frequensyand thatE(w) is a
distance which is easy to calculate using continuum mecharcomplex quantity with an imaginary part related to the inter-
ics, u/R~¢/E. This result can also be derived from simple nal friction of the rubber. In a first approximation we may
dimensional arguments: First, note thatmust be propor- still use the estimates presented above for the deformations
tional to o since the displacement field is linearly related toinduced by the largest asperities if we repl&eE(0) with
the stress fieldwe assume here, and in what follows, that|E(w)|, where the frequencyw=v/\,. Now, for a typical
linear elasticity theory is valid However, the only other rubber at room temperature(w)~E(0) for w<w,
quantity in the problem with the same dimension as the=10°s . When the frequency increases towards the glassy
stress is the elastic modulug sou must be proportionalto  region (w~10°s™), |E(w)| increases by a factor of
o/E. SinceR is the only quantity with the dimension of ~1000. In a typical case, for a tires sliding on a road with
length we get at once~ (o/E)R. Thus, with reference to v~10m/s one gets/w.~0.1mm. Thus, the deformations
Fig. 7, if h/\~ o /E, the perpendicular pressusg will be  induced by the largest asperities are relatively well described
just large enough to deform the rubber to make contact withy using the low frequency elastic modulégw)~E(0).
the substrate everywhere. However, the rubber will be much harder to deform by the
In the case of passenger tires one typically kes small sized asperities since the effective elasti¢yw)|
~0.2MPa, and in the case of truck tires 0.8 MPa. This is afmay (depending on the size of the asperitibs up to 1000
least one order of magnitude smaller than gsimtic or low-  times higher than the low-frequency modulus. On the other
frequency elastic modulu€~ 10 MPa of filled rubbergbut ~ hand, in the antilock braking systetBS) of automobile
only a little smaller than that of unfilled rubber wheke tires on dry or wet road <1 cm/s in the incipient part of the
~1 MPa. We conclude that the pressurg is in general not footprint area, and in this casé w.<0.1um so that surface
able to deform the rubber to fill out the large surface cavitieavities with linear size larger than 04m will experience
on a road, since in this case one typically has~1, which  relative “soft” rubber. These aspects of thérequency-
according to the discussion above would require a local preflependentdeformation of the rubber by the substrate asperi-
sure of ordero~E. However, according to the contact ties is taken fU”y into account in the theory dEVE|Op6d below.
theory of Greenwood!’ the averagepressure which acts in In Sec. V and Appendices B and C, | develop a new
the rubber—substrate contact area atl#igestasperities is ~ contact theory for surfaces with roughness on many different
of order~(A/R)Y2E, whereA is the rms surface roughness length scales. The contact theory of Greenwood was origi-
amplitude andR the (averagé radius of curvature of the nally developed for surfaces with roughness on a single
largest surface asperitiésee Fig. 4. Since for a road surface length scale. Thus, in this theory the surface asperities are
we expectA~R it is clear that the local pressure in the “@pproximated” by spherical caps oidentical radius of
contact area of the large surface asperities will be of order ofurvature (but with a Gaussian height distributionThe
E, i.e., just large enough in order for the rubber to deformGreenwood theory has been applied to real surfaces with
andfill out at least some of the smaller sized surface cavitiesroughness on many different length scales, by defining an
The way the(apparent contact area varies with the observa- 8verage radius of curvatufe (see, e.g., Ref. 23However,
tion length scald./¢ is described by the functioR(¢). it tus out thatR depends strongly on the resolution of the
Next, let us consider the role of the rubber—substratéough”ess‘mea_su””9 mstrument, or any other form of fllter_—
adhesion interactio: When the rubber deforms and fills out Ing: @nd hence is not unique. The contact theory developed in

a surface cavity of the substrate, an elastic enefgy this paper is based on a completely different physical ap-
~EXh2 will be stored in the rubber. Now. if this elastic Proach, and gives well defined results for surfaces with arbi-

energy is smaller than the gain in adhesion enefgy U@y surface roughness.

~Avy\? as a result of the rubber—substrate interaction
(which usually is mainly of the van der Waals-typ¢hen IV. SLIDING FRICTION
(even in the absence of the lo&g,) the rubber will deform Using the theory of elasticitfassuming an isotropic
spontaneously to fill out the substrate cavities. The conditiorlastic medium for simplicity one can calculate the dis-
Eeo=Eaq gives™ h/x~ (A y/EN)Y2. For the rough surfaces placement fieldu; on the surfacez=0 in response to the
of interest here we typically have/A~1, and with E  surface stress distributiong = o3 . Let us define the Fou-
=1MPa and the surface free energy chandey rier transform,
=3 meV/A? the adhesion interaction will be able to deform 1
the rubber and comple_tely fill out the cavities K ui(q, @)= _gj d2x dt u(x,t)e iax—ot),
<0.1um. However, | believe that because of surface con- (2m)
tamination there will be a low distance cut-off in the sum and similar foro;(qg,w). Herex=(x,y) andq=(qy.q,) are
over length scales which is larger than Quin, and for this  two-dimensional vectors. In Appendix A, | have shown that
reason, in the context of the tire-road friction, | do not be-
lieve that the adhesion rubber—substrate interaction is impor- ui(9, @) =M;;(q,0)o(q,w),
tant. The same conclusion has been reached by Fuller argt, in matrix form,
Tabor in an experimental study of the dependence of rubber-
substrate adhesion on the surface roughffess. u(q,®)=M(q,»)o(q.0),

The discussion above is for stationary surfaces. Duringvhere the matriXsee Appendix A
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1
S(a,w)
2
(PL2z+p1QQ)

T2 Q(k,»)(29-0q2)

0] 1
+]= + —ee) . ©)
Cr Pt

whereg=q/q, e=zX§, and where
2

w? 2 2
S=|-—7-29°] +49°pp., (4)
Cr
Q=2q"— w?/ci+2prpy, (5)
p = + (1)_2+i6_q2 v p = + (1)_2+i6_q2 v
T —_ C-2|- —_ Il L —_ CE —_ 1l
(6)

where the+ and — sign refers tow>0 andw<0, respec-
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It is interesting to note that if, instead of assuming that the
surface stress act in thedirection, we assume that the dis-
placementu point along thez-direction, then

Uz(q:w):(M_l)zz(Q-w)uz(Q-w)-
where in the limitw/crq<<1,

2Eq(1—v)

(Mfl)zz:—m,

which differ from Eq.(12) only with respect to a factor
4(1—v)%/(3—4v). For rubberlike materialsi(~0.5) this
factor is of order unity. Hence, practically identical results
are obtained independently of whether one assumes that the
interfacial stress or displacement vector is perpendicular to
the nominal contact surface. In reality, neither of these two
assumptions hold strictly, but the result above indicate that

tiVer, and wheree is an infinitesimal pOSitiVe number. In the the theory iS not sensitive to this approxima‘tion_

equations above, ct, andc, are the mass density and the

Let us write

transverse and longitudinal sound velocities of the solid, re-

spectively. Note thaty andc, are complex frequency de-

pendent quantities given by
E

2__

CT_Zp(1+ v)' @)
- E(1-v)

o T (=20 ®

whereE(w) is the complex elastic modulus anfw) is the
Poisson ratio.

We now assume thd¥ h(x)|<1 [wherez=h(x) is the
surface height profileand that the surface stresgq,w)
only acts in thez-direction so that

uz(Qa‘U)zMzz(q!w)a'z(va)v (9)
where
Tl (e
MZZ_pC% S(q, ) (CT) ' (19

Since in the present cage=v(q we getw/crq=v/ct<1 in

U(x,t):f d2qdw u(q, w)e@x—en.

If we assume that

u(x,t)y=u(x—vt),

then
2 i(g-x—ot)
u(g,w)= T )3fdxdtu(x vt)e ! (ax—at
=8(w—qg-v)u(q), (13
where
2 i X
u(q)= 2 )ZJ'd xu(x)e 'd

If o; denotes the frictional shear stress, then the energy dis-
sipated during the time periag equals

AE=0'onvt0, (14)

most cases of practical interest. Thus, we can expand to leadthere A, is the surface area. But this energy can also be

ing order inw/ctq. This gives
Q~ wZ/CE,

1 1
S~ 2q2w2( ? - ?) ,
L T

and
w2
pT~iq( 1- qu) ,
and similar forp, . Thus, we get
o gl (T
= P_Cg S(q,w) \ ct m CL ’
(11)
so that, using Eq4.7), (8), and(11),
(M) == 5 12

written as

AEzf d?xdtu- o

=<2w>3fqudw(—iw)u(q,w>~o(—q,—w>, (15

wherew=v-q. Substituting Eq(9) in Eq. (15) and using Eq.
(13) and that

[8(0—q-V)]*=(to/27) S(w—q-V),

gives

AE=(2w)2tOJ d’q(—iw)[Mz{—0,— )]

XUy (Q)Uz(—0).

Comparing this expression with EQL5) gives the frictional
shear stress,
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(2m)? . _
oi=—3— | d*a(-iw)[M{ -0~ )]
VA

X(u(qQ)u,(—Qq)), (16)

where (---) stands for ensemble averaging, i.e., averaging

over different realization of the rough surface profile.
As an application, if

Uu,(x) =hg coggex) cogqgy),

we get

h
U(0)= - [ 8(che— o) + (e + o)

X[ 6(gy—do)+ 6(dy+do)].

Substituting this result in Eq16) and using thatw=wvq,
(assuming sliding along the-axis) and that

[8(a—a0)*=[Ao/(2m)?]18(q—qp),
gives
a1=—izh50o([M24do,Go, —dov)]
—[M:4do,G0,900)] ")
= #h3do IM[M.4do, o, qov)] ™.
Using Eq.(12) this gives

E(qov)
1—v2 "

1 2
Uf“g(ho%) Im 17
Note that, in accordance with the discussion in Searl,
depends only oigghg, so that the surface roughness profiles
in Fig. 1 give equally important contributions to the sliding
friction.

Let us now consider sliding on a randomly rough surface

described by the function=h(x) [wherex=(x,y)]. Assume
first that the rubber is able to deform and completely follow
the substrate surface profile so thiat=h(x). Using Eq.(16)
gives

2 2
(,;) fdzq o (h(@)h(—q))

O'f:_i

X[MA—a,—qu)] Y (18)
where we assumed thé)=0. Now, note that
A :
<h(Q)h(—Q)>=(2;)4Jd2X<h(x)h(O)>e*'q‘X
_ Ao
= WC(Q), (19

since (h(x)h(x")) depends only on the difference-x’.
The spectral density (q) is defined by

1 _
— 2 —igx
CA)= 72 f d?x (h(x)h(0))e 9™ (20
We expectC(q) to have the general form shown in Fig. 8.
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C(a)

2n/L

©

44

q—

FIG. 8. The height correlation functioB(q) for three different(idealized
surface roughness profile®) Self-affine fractal surface with the upper cut-
off ~2#/L, determined by the lateral size of the surface(b) Self-affine
fractal surface with the upper cutoff, independent of.. (c) C(q) for a
rough surface, characterized by a narrow distribution of waveleagth
=2m/q, components.

The result in Fig. &) corresponds to a self-affine fractal
surface, where the lovg-cut off (long distancg is deter-
mined by the lateral sizé of the contact areagy~27/L,
while in Fig. 8b), we assume that the self-affine fractal scal-
ing only occurs forg>qg, whereqq is independent of the
size of the rubber—substrate contact aig=e Sec. )

Substituting Eq.(19) in Eq. (18) and using Eq.(12)
gives

E(qu cos
1—1°

¢)

af=%f d?q g cos¢ C(q) Im (21)
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y V. CONTACT THEORY FOR RANDOMLY ROUGH
(@) v / x 0) —" SURFACES

/ |
I We must now derive the functioR(q). If A, denotes
f —] the nominal contact area, the lo&=o0yA,. This load
I | must remain unchanged as we study the contact at shorter
o= length scales. Consider the system at the length skale
=L/¢{, whereL is of order the diameter of the nominal con-
FIG. 9. A cosine roughness profile with the wave vec®ralong, and(b) tact area. We define] =2x/L and write q=q.¢ Thus
perpendicular to the sliding direction. Only in ca&® will the surface p —-p ) hich L d b f L | . If,
roughness generate time-dependéittuating deformations of the rubber (9)=P(q.{), which we denote )P(é’) or simplicity.
block. (o), denotes theveragepressure in theapparent contact

area on the length scalg ¢,

9=0

_ o0A0= () P({)Ao, (24)
where we have used polar coordinates so thatqcosa,
and where E=E(w)=E(qucos¢) and v=r(w) so that
= p(qu COS¢).
The friction coefficientu can be obtained by dividing P({)=0ol{o);. (25

the frictional shear stre<@1) with the pressurer, Thus, in order to determin®({) we must first determine

(o). If P(0,{) denotes the stress probability distribution in

1 E(qu cos¢) the contact area on the length schlg, then
MZEJ d?q q2C05¢C(Q)P(Q)|mm- (22 J ¢

(0'>§=J‘ dO’O’P(O’,g)/f do P(a,?). (26)
In Eqg. (22) we have introduced an additional factBfq), 0 0

defined as the fraction of the original macrocontact areebsing Eqgs.(25) and (26) gives
where contact remains when we study the contact area on the

length scalex =2#/q. In principle, v depends on frequency o o

but the factor 1/(* v?) varies from 4/3-1.33 for »=0.5 P(():Uojo do P(0,{) JO do oP(0,{). 27
(rubbery regionto ~1.19 forv=0.4 (glassy regiohand we

can neglect the weak dependence on frequency. The derivation ofP(¢) andP(a,{) are given in Appen-

SinceC(q) andP(q) only depend on the magnitude of gix B, Here | give the result foP(¢),
g, from Eq. (22),

P(g)—szdxgﬂex —ij'gd{' (") (28)
;| dadcap@ T S
p=5 | dad*C(a)P(q

where
" 2wd¢ 51 E(qu cos¢) 23 L £ )2
CoS¢p IM————. qu cos
(1-v9)o —Za a3 f v R
Note that the factor cag in the integrand vanishes when Now, assume that the macroscopic presstyalepends

¢= /2, while it is maximal whenp=0. This has a simple on the lateral positiorx in the nominal contact region, as
but important physical origin: Consider two cosine-surfacewould be the case if, e.g., a rubber ball is squeezed against a
corrugations, where the “wave vector” pointa) along the  nominally flat substratgwhere oy(x) is given by the Hertz
x-axis (the sliding directioin and (b) along they-axis, see expressioh If we assume that the cut off distandg is
Fig. 9. The former case corresponds#ter 0, and in this case much shorter than the diameter of the contact §seathat
the rubber block will experience pulsating deformations durthe variation ofog(x) over the distance\q is negligiblég,
ing sliding along thex-axis. The second case correspond tothen, if we replace the constamt with the functionoy(x),
¢=m/2, where the elastic deformations of the rubdemot the contact theory developed in Appendix B is still valid. We
changeduring sliding along thex-axis, and this type of sur- note, however, that as long as adhesion is unimportant
face roughness will therefore not contribute to the friction. (which is the case if the surfaces are rough endtgland
The present theory of rubber friction differs from the oo(x) is small compared to thélow-frequency elastic
theory of Klippel and Heinrichin that it is fully 3D, and it modulusE, the rubber friction coefficient ignearly inde-
takes into accourvia the functionP(¢) ] how the rubber, on  pendent of the actual pressure distribution in the nominal
each length scalé/{, is able to follow the hard substrate contact aredsee below and Appendix)C
profile, in contrast to Ref. 9, where this effect was only taken  Let us reintroduce=q, ¢, and summarize the basic re-
into account in some average way. Thus, the numerical results obtained above. The steady state kinetic friction coeffi-
sults presented below are rather different from the predictiorient for a flat rubber surface sliding on a nominally flat
of the theory in Ref. 9. substrate is in the most general case is given by
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1 (a
M=§Jqqu o C(a)P(q)

2w E(qu cos¢)
xfo d¢cos¢lmm, (30
2 (= sinx )
P@)== | et -x6(@)], 3D
where, using Eq(29),
1 (a 27 |E(qu cosg)|?
G<q>=§fq dacc(a) | d¢((1qffz)(i) (32

We consider now the limito<E(0), which is satisfied in
most applications. In this case, for maptalues of interest,
G(qg)>1, so that onlyx<1 will contribute to the integral in
Eg. (31, and we can approximate sir=x and

2 o
P(Q)*;fo dxexd —x*G(q)]=[7G(q)] "% (33

Thus, within this approximation, using Eq82) and(33) we
getP(q) = og so thatu is independenof the nominal stress
og. Similarly, note that if we scal&(w)— oE(w), then
from Eqgs.(32) and(33), P(q)«=1/a, so thatu depends only

on the frequency variation of the complex elastic modulu

B. N. J. Persson

and from Eqgs(32) and(35),

1 a/dg
G(q)= @(QOho)ZH L dg g2+t

2

" f d¢,’w @

(1_7/2)00

Note that since, to a good approximation?(q)
~[G(q)] Y2 it follows that P~1/goh,, and thus u
~0oho.

If we assume thaE(w) approaches a well defined limit
as w—, then Eq.(37) gives for largel, G(qol)~ £% 1.
Since O0<KH <1 it follows that G(qg{)—* as{—». Thus,
for large ¢ the integral(28) will be dominated by the small
x-region and we can expand sir= x. Substituting this result
in Eq. (46), usingG~ ¢2~2" and defining a new integration
variabley=xZ'"", givesP(¢)~¢ "M as¢—. Thus for
0<H<1 the contact aregoes to zer@s{— . This will, of
course, not occur in real systems, where there always exist an
upper cutoff{,.,=0:/qq in the integral ovel. For example,
the shortest possible distances are of atomic length, and this
will give an upper cutoff. In practice, the cutoff is likely to
occur at a much larger length scale because of contamination
particles, or trapped fluiéor trapped pockets of compressed

sain, which will inhibit the elastic media from penetrating

but not on its magnitude. We note that even if the macro-a”d fill out the small-sized roughness cavitisge Sec. Il

scopic contact pressurgy(x) depends orx, and the integral
(33) is still valid,

P(q,x)~ % f:dxexr[—XZG(q,x)]=[7TG(q,x)]‘1’2.

Thus, if og(X)<<E(0) for all x, the friction force will be
independent obry(x). For tires the conditiorrg(Xx)<E(0)

is usually satisfied for alk. Consequently, on a dry road

and Fig. 5. In addition, if the rubber has a thin modified
surface layel(skin), this may also act as a cut off. Further-
more, when the area of real contact decreases the local pres-
sure in the contact areas will finally reach the yield stress of
the materials and beyond that point the area of real contact
stays constant. However, even without an upper cutoff the
friction coefficient given by Eq(36) will (for a fixed sliding
velocity v) remain finite ag ma,=0;/qo—°°. This would not
necessarily be the case#(¢)=1 for all { since the inte-

track one expects the same friction for wide and narrow tiresgrand in Eq.(36) (with P=1) behaves ag 2" for large ¢,

assuming the same rubber temperature and that the rubb%rﬁd the integrat ¢%-2"

road adhesional interaction is unimportant.
In order to take into account th&(q)—1 whenG(q)
—0, we use the interpolation formula,

P(a)~(1+[7G(aq)]¥) (39

Numerical evaluation of Eq.31) shows that Eq(34) is an
accurate representation B{q) for all q (or, equivalently, all
G).

If we assume that the substrate surface is self affine fra
tal on all length scale between an upper and lower cutoff

No=27/qy and\;=27/q,, we have[see Fig. &)] C(q)
=0 for g<(qg, while for q>qq,

C(q)=~k(q/ge) 2"+, (35)
whereH=3—D; (the fractal dimension D;<3). If we
define (h?)=h2/2, then Eq.(20) gives k= (ho/qo)?H/27.
Using Eqgs.(30) and (35) with q=qq{ gives

1 d1/dg
M”E(QOho)ij d¢ ¢ 2P P(gol)
1

E({dov cose)

(1—v?) oy (36)

xf d¢ cos¢ Im

C_

max . Which diverge ifH<0.5. However,

when the correctasymptoti¢ dependenc®({)~¢ 1*H is
taken into account the integral converges-a&,., so that
the very largef-contribution to the friction force will always
give a small contribution. Note thai—0 corresponds to
very rough surfacesfractal dimensionD;~3), and in this
case the integral clearly converges relatively slowly.

It is possible to carry the analysis presented above fur-
ther, by deriving an approximate analytical expression for
u(v). This result will be presented elsewhere.

VI. NUMERICAL RESULTS

As an example, assume thB&tis given by the model
shown in Fig. 10. This model is, in fact, not a very good
description of real rubbers, since the transition with increas-
ing frequency from the rubbery region to the glassy region is
much too abrupt, leading to a much too narréand too
high) «(v) peak. Nevertheless, the model gives a qualita-
tively correctE(w). Later we will use experimental data for
E(w) for two different rubbers, illustrating how the results
based on the present modElg. 10 are quantitatively modi-
fied.
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FIG. 10. Rheological model. In all calculations below=0.001s, E; 0 40 80 120
=10’ Pa, andE, /E,=a=1000. €

FIG. 12. Variation ofP({) with the magnification, for a few different
The model in Fig. 10 corresponds to the elastic modulussliding velocities for the system studied in Fig. 11.

El(l_ i wT)
T 1ta-iwr’ (38 since the decrease of th@pparent contact area with in-
B - creasing magnification, gives a strong reduction of the con-
Note that E(«)=E, and E(0)=E;/(1+a) so that yip tion to the friction force from the small-scale roughness.
E(=)/E(0)=1+a. Since typically E(«)/E(0)~1000 we  Figyre 12 shows(¢) as a function of, for several sliding
takea=1000 in all numerical calculations presented beIOW'VE|OCitieSU. Figure 13 shows how(v) depends on the
We assumee,> oy, in which caseu(v) is independent of 50451 dimensiorD, when,,.,=100, with the other param-

E(w)

Ey andoy,. Note that eters the same as in Fig. 11. In Fig. 14, | shew.y
E, (1+a) *—izVv =maxu(v)} (from Fig. 13 and from additional calculations
E({Qov cosé) =7~ gy as a function oH (or D). Note that when the fractal dimen-

sionD;=3—H increases towards 3. first increases, and

whereV=qguv 7/(1+a). Thus,u as a function ol depends  then, whenD; increases beyond 2.9, decreases.
only onH and gohy. However, instead of plotting. as a The rheological model used abo(gee Fig. 1D gives a
function of V, we prefer to use real units corresponding to atoo abrupt transition from the rubbery region to the glassy
typical case. We choose=10"°s, and H=0.85, do  region with increasing frequency which leads to a too high
=2000m*, andqoho=1. Sinceu~qohy, the friction co-  ,,  and too narrows(v) peak. We therefore present some
efficient for othergohy can be obtained from direct scaling. results based on experimentally measured shear modulus.

Figure 11 shows the friction coefficient as a function OfFigure 15 shows the real R&w) and imaginary InG(w)
the sliding velocity, as obtained from Eq80)—(32). I show  part of the shear modulus for synthetic polyisopréaeT
results for the cutoff parametéf,,,=10, 100, and 1000. We =303 K), reticulated with dicumyl peroxide and without
note that the inclusion dP({) in Eq. (36) is very important,  filler. The rubber glass transition temperatufg=303K;

1o————————————— 25
n

8t 20f

u

6r 151

4r 10+

2t 5k

0 - 0

log[v/(1m/s}] log[v/(1m/s)]

FIG. 11. The kinetic friction coefficient for rubber sliding on a substrate FIG. 13. The kinetic friction coefficient for rubber sliding on a substrate
with a self-affine fractal surface profile characterized by the expoRent with a self-affine fractal surface profile with the cutdff,,=100, and with
=0.85. Calculations are presented for different cutgff, and with gghg goho=1. Calculations are presented for different exponétitsising the
=1 andg,=2000 n%. Results for the rheological model shown in Fig. 10. rheological model shown in Fig. 10 for the same parameters as in Fig. 11.
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FIG. 14. The variation of the maximum friction coefficiefitom Fig. 13 FIG. 16. The kinetic friction coefficient for polyisoprene rubber sliding on a

with the parameteH. substrate with a self-affine fractal surface profile characterized by the expo-

nentH =0.85. Calculations are presented for the cufg{f,=100 and 1000,

and with ggho=1 and g,=2000 nT. For the {,,,~=100 case we show
sults for three different nominal pressureg=0.1, 1, and 10 MPa. For

this rubber is, of course, not used for tires, but was used in on
e shear modulus shown in Fig. 15.

detailed study of rubber frictioff: In Fig. 16 we show the
resulting friction coefficienju(v) as calculated from the ex-

perimentalG(w)-data given in Fig. 15, witlyo=2000m"  for filled rubbers. This nonlinearity is associated with the
and ggho=1 and withH=0.85. For thel, =100 case, | breakdown of the filler network, which occurs in the range of
show results for three different nomingr averagg pres-  a few % strain amplitude. Since the stains involved in rubber
suresiop=0.1, 1, and 10 MPa. The nominal pressure at thefriction when sliding on a road surface is of order uniby
tire-road interface is of order 0.3 MPa so that in that case one-100%), when calculating the tire-road friction coefficient
expect no dependence pfon oo. However, whenoy be-  the effective elastic moduluS(w) obtained from large am-
comes of orderE(0) the friction coefficient is no longer plitude stress-strain measurements should be used. Figure 17
independent ofry, but decreases with increasing (see 10 shows the friction coefficient for two different temperatures,
MPa curve in Fig. 16 Note that the effect of the applied 40°C and 70°C, and for the cutaff,,,=100 and 1000. We
pressurdFig. 16 manifests itself mainly on the low-velocity have assumed a self-affine fractal substrate with
side of theu(v) peak. =2000m?, goho=1, and H=0.8. The complex elastic
Finally, let us present some results for a carbon and silicgnodulusE(w) used in the calculation was measured at 8%
reinforced rubber compound, used by a major tire compangtrain amplitude, which is so large that a complete break

(Pirelli) for “all-year-around” tires. One problem with apply- down of the filler network has occurred. Thus, further in-
ing the present theory to filled rubbers is the strongly non-

linear relation between the shear stress and the shear strain

4 . . - . .

3r 1 1
w
o
=
B 2r
=
=
a 4 ]
[o]
E 4} ]
= |
o

or 1 0 . . , . . . . . .

i 12 8 4 0 4 8
4 e loglv/(1m/s)]
-8 -4 0 4 8
log(frequency/1Hz) FIG. 17. The kinetic friction coefficient for an “all-year” tire-rubber sliding

on a substrate with a self-affine fractal surface profile characterized by the
FIG. 15. The real and the imaginary part of the shear modulus of polyisoexponentd=0.80. Calculations are presented for the cutgff,=100 and
prene rubberglass transition temperatuig,=303 K) as a function of fre- 1000, and withgohy=1 andg,= 2000 m%, and for two different tempera-
quency, forT=303 K. tures,T=40°C and 70 °C.
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crease in the strain amplitude gives only small modifications (a) \Y) .
of the stress—strain relation, which has a negligible influence e e e TR e 3
on the sliding friction. However, iE(w) is measured at low e s i e
strain amplitude, say 1%, the friction coefficignbt shown A S nias g

is about half as large as when the calculation is based on the — —— — —_—
8% stain amplitude data. In Fig. 17 we only shp:e) up to — - —_ - - —
the velocity where the friction coefficient is maximal; higher = - _ _
velocities are probably of no direct interest for tires since the — - - —
region whereu(v) decreases with increasing should be _ — -
avoided, as interfacial stick-slip may occur wherd(v) —

<0, which may result in an enhanced wear rate, and a loud /
noise?>

VII. DISCUSSION

The theory developed above can be used to estimate the
kinetic friction coefficient for rubber sliding on a rough hard
substrate. The input for the calculation, namely, the complex
elastic moduluE(w), and information about the substrate
roughnes$spectral functiorC(q)], can be obtained directly
from relative simple experiments. In this section, | would
like to make some additional comments related to rubber
friction.

First, it would be interesting to perform experiment on
systems with well defined surface roughness. Thus, it is now
possible to prepafé surfaces covered by ordered arrays of
nearly identical hemispherical “bumps.” Sliding of rubber
on such well defined substrates would be good model sys-
tems for an accurate test of the theory developed above. It
would also be interesting to perform rubber friction measure-
ments on perfectly flat substrates to study the adhesional
contribution to friction. | note that most earlier studies of the
adhesional contribution have used polished glass surfaces
which now are known to be very rough on the nanometer
scale?’

By using a transparent substrate, it should be possible to
study the asperity contact areas during squeezing and she&re. 18. A thin fluid layer between a rubber surface and a hard rough
ing of thin fluid films. In fact, Robertd has already studied substrgte. When charge is introduced upon the contact surfaces an electrical
r§zpuIS|on force occurs between them, which may support the normal pres-

fluid films between rubber and a glass substrate. He hasure of at least-0.1 MPa. In a typical case an equilibrium film of liquid

shown that the great flexibility of rubber surfaces leads tsome 200 A thick becomes established between the surf@ese) show
ready entrapment of liquid by elastic deformation. Similarthe system under increasing squeezing pressure. The generation of repulsive

effects have recently been observed for thin organic |iquidorces betwee_‘n rubber anql glass 'surface_s means.tha'lt the pair will make a
films beftweer! mica surfac@%?g and also observed in com_— nlﬁl:csl’t(r)gtc;rgc:;rg)r\g contact with a uniform thin film of liquid between them as
puter simulation$® Roberts also found that under certain

circumstances thin(uniformly thick) fluid films remains

trapped at the rubber—substrate interface. This happens wheesult. In this way it has been shown that watntaining a
charge is introduced upon the contact surfaces leading to arace of sodium dodecyl sulphate to generate electrical repul-
electrical repulsion force between them. Such a force casive force$in thin films 200—2000 A thick possesses viscos-
support the normal load provided the contact pressure is ndty that is constant over this range of thickness and almost
higher than~0.1 MPa. In a typical case an equilibrium film the same as the bulk viscosity. Rob&talso found that the

of liquid some 200 A thick becomes established between theubber—glass contact in shear is staflaiform film) under
surfaces. The generation of repulsive forces between rubbeontact pressures of about0.1 MPa. However, friction
and glass surfaces means that the pair will make a microcomreasurements have shown that the electrolyte solution alone
forming contact with a uniform thin film of liquid between does not effectively lubricate the contact surfaces when films
them(see Fig. 18 (Similar effects may be important in bio- sheared are thinner than 100 A. If, however, a surface active
logical systems, e.g., polyelectrolyte layers are responsiblagent(e.g., sodium dodecyl sulphajés included in the elec-

for the low friction in mammalian joints}) This can be used trolyte solution, monolayer protection prevents surfaces from
to measure the viscosity of water in thin flms by squeezecoming into intimate contact at points where the separating
action. The method has the advantage that dust or surfadiguid film is locally punctured. The shear strength of the
asperities can be tolerated without appreciably effecting théquid film itself appears to remain constant and nearly the
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same as the bulk viscosity of the liquid whether the film is 50Fuller and Tabd? have already studied the influence of the
or 50000 A thick. substrate roughness on the rubber—substrate adhesion, and
Another very interesting topic is rubber friction on ice. found (experimentally that a relative small surface rough-
When most solids, e.g., glass, stone or metal, slide on ice theess(rms roughness-1 um, or largey is enough to remove
friction drop as the sliding velocity increases. As shown by(or kill) the effect of adhesion. However, when trying to
Bowden®*® this is caused by production of melt water as aunderstand this result theoretically, they employed a
result of frictional heating of the ice surface. For rubber onGreenwood-type of theory with roughness on a single length
ice, however, Roberté has observed the opposite effect: In scale, while real surfaces always have roughness on many
the temperature range 10 °C<T<0 °C the frictional stress different length scales. A treatment of the adhesion contact
increaseswith increasing sliding velocity. This can be ex- problem within the present formalism gives a rather different
plained by assuming that a thin liquidlike water layer occurspicture of the role of surface roughnéSs.
at the rubber—ice interface even in the absence of sliding. It ~ Finally, for practical applications it is necessary to study
is known that at the ice—vapor interface such a liquidlikethe heating of the rubber during sliding. This problem is, in
layer does indeed exist as a resulpoémelting®® It remains ~ fact, closely related to the friction problem, since the heat
to be understood why the premelted layer is absent when thgource densityQ(x,t) is determined by the spatial distribu-
ice is in contact with, e.g., glass or a metal oxide, but notion of the hysteretic energy losses in the surface region of
when it is in contact with rubber. the rubber block. The temperature fi€ldx,t) must be de-
| believe that the explanation of this remarkable phe.termined by solving the heat diffusion equation with the heat
nomena is as follows: Water is likely to chemisorb on glasssourceQ(x,t), and with the appropriate boundary conditions
and on most metal oxide surfaclsThus, when such Which depend on the external conditiofesg., road tempera-
H,O-monolayer(“icelike” ) surfaces are brought in contact ture).
with an ice surface with a thin water layéraused by pre-
melting), then the situation will be similar to the case of
bringing an ice block in contact with another ice block, V. SUMMARY AND CONCLUSION
where the water layer clearly will disappedrefreeze”) in

the contact area. On the other hand, because of the inert _There IS at present a strong _drlve by tlre_ companies o
s . . design new rubber compounds with lower rolling resistance,
nature of rubber, it is unlikely that a layer of chemisorbed

water molecules will occur on the rubber surface. Further-hlgher sliding friction, and reduced wear. At present these

more, the rubber surface is likely to be microscopicall attempts are mainly based on a few empirical rules and on
rou h and the rubber moIecuIesyunder oes large F'zhem)]/V ry costly trial-and-error procedures. | believe that a funda-

g ) goes 1arg ental understanding of rubber friction and wear may help
movement which may tend to break up any icelike structurqn

: . o . T the design of new rubber compounds for tires and other
at the interface. For this reason it is plausible that a I|qU|dI|kerubber applications, e.g., wiper blades.

water layer may exist at the rubber—ice interface but not In the present paper | have presented a general theory of

whehn ce :S n contaf[:tlwnhda haltrd, hl?(:]l;an_ergy sot!|d Sturficgthe hysteretic contribution to rubber friction. The theory has
such as glass or metal oxides. Tt would be Interesting to studyq o, developed for rubber sliding on self-affine fractal sur-

Fhis problem in greater detail, €.g., using molecular dyn‘"‘mfaces, e.g., a tire on a road surface. | have shown that for

ics. : . . .
4 stationary surface&r low sliding velocity, and for typical
. Roberts a[so found that wherl a flat rubber surface pressures in the contact area between a tire and a road, the
slides on a flat ice surface below15°C at speeds less than | bo il only make(apparent contact with about 5% of
1 mm/s _Schallamach waves are observed-A&0 °C and_ for the road surface. On the longest length scale the contact in-
speeds in excess of 100 mm/s the rubber wore rapidly anges the largest road surface asperitieich are associ-
the friction fell as wear progressed. Rubber fragments wergq \yith the upper cutoff length in the fractal distribution of
seen to form between the sliding surfaces and to becomg, g nsirate surface roughniessowever, in each such con-
rolled together; they wgre then left d.ep.03|ted on the ice traCI‘1:act region the local pressure is large enough to squeeze the
Another extremely important topic is thielastohydrody- pher into many of the smaller-sized “cavities.” | have de-

namig squeezing of thin liquid layers between a rubber SUryeloped a contact theory which describes how(Hyparent
face and a hard rougfe.g., self-affine fractalsubstrate, €.9., ontact changes with the magnification.
a water film squeezed between a tire and a road surface. This

is a very complex problem related to cavity-connectivity, dis-
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Tribological Strategies from the Nano- to Meso-Scales.” HereA, B, andC are three scalar fields, am=—iV and

K=nXp vector operators. Note thét is aninternal opera-
tor on the planez=0, i.e., it involves only differentation

APPENDIX A: DERIVATION OF THE MATRIX M within the plane. Substituting EGA3) in Eq. (A2) results in
In this Appendix, | present a short derivation of the ma-three scalar equations,
trix M [see Eq.(3)]. Assume that a viscoelastic solid occu- (w?+c2V2)A=0, (A4)
pate the half space>0. On the surface=0 of the solid
acts the stress; =03, whereo;; is the stress tensor. We (0?+c2V?)B=0, (AS5)
write
(w?+c2V?)C=0. (A6)
cri(x,t)=J d?qdw oj(q,w)€@*— et It is obvious from Eq.(A4) that A is associated with the

longitudinal displacement field and and C with the two
. transverse displacement fields. Note also thattBefield is
= f do oi(x,w)e™', parallel to thexy-plane. In the present case, the surface stress
o;(x,t) will generate viscoelastic displacement waves which
propagatesnto the solid. Thus the relevant solutions to Egs.
(A4)—(A6) will have the form

where

oi(q,w)= ! d?xdtoy(x,t)e (@ eh
itds 23 il ,

A(X,z,t) = j d?qdw A(Q,w)e @ PLzmien, (A7)
1 ‘
gi(X,w)= ppe f dt oj(x,t)e“t.
o , . , B(x,z,t)= f d?qdw B(q, w)€@x*Prz-iet, (A8)
The elastic displacement field(x,z,t) satesfies the equation
of motion, . .
0 Cxzt)= f d?qdw C(q,@) @ PEion, - (A9)
p—==nV2Uu+(+\)VV-y, (A1)
at where

w® w®

1/2 1/2
—Z—iie—qz) , p,_=i(—2—iie—q2) ,

wheref. andX are linear integral operators, e.g.,
pr==

/:L¢<t)=f:dt' w(t—t) (1),

where the+ and — sign refers tow>0 and w<0, respec-
tively, and wheree is an infinitesimal positive number, and
where the square-root function has its branch cut along the
negative real axis.

Now, using the equation

whereu(t) =0 fort<<0 (this is a result of causalitybut this
fact is not important for what follows. In what follows the
time-variable will always be Fourier transformed so that Eq.
(A1) takes the form,

—pw?u=pu(0)Vau+[u(w)+ A (w)]VV-u, (A2) o= (U j+ Uj i)+ AU 85
whereu=u(x,z,) and gives
gi3=Njoy; =p(n-Vu;+Vin-u)+An;V-u.

,u(w)=f dt ()€, o N
—o0 Thus, writing —iV=p, the boundary conditiomr;(x,0,w)

and similarly for\ (w). We definethe complex elastic modu- — oi(x,w) takes the form

lus E(w) and Poisson ratio(w) via w(w)(n-pu+pn-u) +\(w)np-u=—io(X,w), (A10)
vE — E _o whereu=u(x,0,w). Let us substitute EA3) in Eq. (A10).
A+v)(1-2v) 7 1+v M We get
and the complex sound velocities(w) andc, (o) via p(2p,A+K?C)+Kp,B+pxXKp,C+n(\ u)p?A
Cz_,u C2_)\+2,u =(—ilp)o. (A11)
T P From Eq.(A11) we obtain three scalar equations by taking
In the equations above, all quantities depend on the frethe scalar producs with the three operatarsK, and p;
quencyw. =(Ppx,Py,0). Note that all these operators are internal differ-

Let us now solve the boundary value problem specifiedntial operators on th&y-plane, which is necessary since
above. It is convenient to introduce the veatowhich points  EQ. (A11) is only valid on the plang=0. We get

along thez-axis, normal to the surface of the semi-infinite 202+ (M )02 A+ 2K20.C=(—i/ w)n- A12
solid, and write the displacement field in the solid on the (2p2F (M )p?) P.C=(=1/pin-a, (A12)
form, K?p,B=(—i/u)K- o, (A13)
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pi(2pA+K?C)—piK*C=(~ilp)p;- 0. (A14)

Using thatk?=p? and p?A=(w?/c?)A, and Fourier trans-
forming the x-dependence so thg,—q, p,A=p_A, p,B
=pB, andp,C=p;C, Egs.(A12)—(Al14) gives

(2p2+ (M p)(wlc)?)A+2¢%p:C=(—i/p)n- o,

(A15)
0°prB=(—i/u)K- @, (A16)
9%(2p A+ 9?°C)—pg’C=(—i/n)q- o. (A17)

In these equationd=A(qg,w) and similar forB, C, anda,
and K=nxg=qe. We must now solve EqgA15)—(A17)
for A, B, andC. From Eq.(A16) we get

i 1
B=—— K- o. Al18
wopr (A18)
From Egs.(A15) and (A17) we get
PR P G A19
=~ 5|2pPat Z q°|n|- o, (A19)
C= | 2 o 2092 ! A20
——SPLHEQ?QU, (A20)
where
w2 2
S=(?—2q2 +40°prp. .
2
Now, since
pXK=npf—p,p;,
we get from Eq.(A2),
u(q,0,0)=KB+q(A—p:C)+n(p A+g°C),  (A21)

where A=A(q,w) and similarly forB and C. Substituting
Eqgs. (A18)—(A20) in this equation gives foru(q,0,w)
=u(q,),

u(gq,0)=M(q,0)0(q,w),
where the matrix,

i 1 . .
M=— p_c'%(—S(q,w) Q(k,0)(zg—qz)

2

+ (pL2z+p+Ga)

e
— +—ee€|,
Cr Pt
whereg=q/q, e=zX§, and where
Q=2q%~w?/c+2p7p, .

APPENDIX B: ELASTIC CONTACT THEORY FOR
RANDOMLY ROUGH SURFACES

In this appendix we will derive the functioR(¢) intro-

B. N. J. Persson

P(o,0)=(d(o—01(X))), (B1)

where o1(x) is the stress which occur in a contact area on
the length scal& /. Here(---) stands for ensemble averag-

ing, i.e., averaging over different realizations of the random
procesh(x). If o1+ Ao denotes the stress which occurs on
the length scal&/({+A¢), then

P(o,l+A)=(8(c—0o1—A0))

- [ 4o (a0~ 20 s(0- a1~ 0")

=fda’(&(a’—AU)W(G—U',{), (82)

where we have used that the averaging over different regions
in ¢ are independent processes. We can write

(5(0’—A0))=%f dw (gW(o' ~20)y (B3)

SinceAq is small we can expand to second orderisr to
get

<5(0"-A0‘)>=ijdWéWU’(l—WZ(A(rZ)/Z) (B4)
2 '

Note that{Ao?)=A¢. Substituting Eq(B4) in Eq. (B2) and
expanding the LHS to linear order ikl gives

dP(0,{)
P(o,{)+ a7 A£=jd0' Plo—0a’,0)| d(c")
2
+§m5(o’)<Aoz> :

Thus

£=f(§)£, (BS)

aL do
where

2

f(g)%ﬁ?

Note that

P(0,1)=Po(0),

where we assume th&,(o)= 6(o— oy), corresponding to

a constant pressure in the nominal contact area.
Equation(B5) is a diffusion type of equation, where time

is replaced by the magnificatiafy and the spatial coordinate

with the stresso (and where the “diffusion constant” de-

pends on?). Hence, when we studi(o,{) on shorter and

shorter length scalegcorresponding to increasing), the

P(o,¢) function will become broader and broader in

o-space. We can take into account that detachment actually

will occur when the local stress reaches 0 (we assume no

duced in Sec. V. Let us first derive an equation for the stresgadhesion via the boundary condition,

probability distribution in the contact area on the length scale

L/{. We denote this function bl (o, ¢). Let us first assume

P(0,{)=0.

complete contact between the rubber and the substrate on all If we multiply Eq. (B5) with ¢ and integrate oves we

length scales. We have

get after some simplifications,
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%J:da oP(0,0)=0

or

deUO'P(O',é’):a'O. (B6)
0

Next, integrating Eq(B5) over o gives

J [« B P
(9_§Jo dUP(O’,{)——f(g)%(ng)
or

o _ ¢, , IP ,
JO daP(a,g)—l—Jldg F(£7) = -(0.4"). (B7)

Using Eqgs.(27), (B6), and(B7) gives

{ aP
P(g)zl—fldg’f(g’)%(o,g’). (B8)

Let us now calculatéAo?). Using Egs.(12) and (19)
give after some simplifications,
(o9~ [ daIM40.00)] (Mod—0,~G0)] *Cla)

E(qu cos¢)|?

B 1
—Zquqsc(Q)fckﬁTvz—
or, sinceq=q,¢,

Ac?) (Ao?
f(§>=<ZZ§>=<ZZq>qL

1 E(qu cos¢)
- gac() [ dg| = T2

Later we will need the function(¢)=f(£)/ o3,

E(qu cos¢)
(1- VZ)(To

2

2
. (B9)

1
g(§)=§qu3C(q)f de

Let us now solve EqB5). Let us first consider a slightly
more general problem, whef({) again satisfies EqB5),

®. f({) ﬁ;,
al do

but with modified boundary conditions,
P(0,{)=P(oy,{)=0, (B10)
P(0,1)=Py(0)=8(o—0y). (B11)

In the equations above we considefo, () as defined only
for 0<o<ovy. Later, we will takeoy—o. The solution to
the equations above can be written as

nmTo
Oy '
Substituting this in Eq(B5) gives

dA,
d¢

(B12)

P= 21 An({) sin

nar 2
:_f(g)(d_y) Ay,

Theory of rubber friction and contact mechanics 3855

which is easy to integrate to get
nm\? (¢ , ,
An(D)=An(1) exg —| — Jdé f(Z")|.
Oy 1

Substituting this result in EqB12) gives

” nm\2 (¢ [ nmo
P=n§1 An(l)exp[—(U—Y) Ld{ f(¢ )}sm(o—Y).

(B13)
Using
fovd C(nmo) . m770'_0'Y5
. o sin oy sin| o i XULY
we get
A1) ngyd P()_(n’IT0'> 2
=— sinl ——|=—sina,,
" Oy Jo 7o Ty gy “n
(B14)
where
nﬂTO'O
an= =Ss0y, (B15
gy

where we have definegsi=n=/oy . Substituting Eq(B14) in
Eq. (B13) gives

2 &
P=— > sine,
Oyn=1

o {2 o vl

Let us now consider the limit-y—. In this case we can
replace

— dn=—f ds,

so that Eq.(B16) reduces to

2Fdé’f(é“')

1

(B16)

2 (= I
P=—J dssin(sog) exr{—sZJ’ dg’ f(¢")
7 Jo 1

sin(so).
Now, let us consider

J—fgd'f ’QPO’
= | 42 10 5-04")

2 (= 14
:;fo ds ssin(&ro)f1 dg' (¢

xex;{—s2f§'dg"f(g")}. (B17)
1
But note that
g ’
J dg' f(¢") exn[—szfg d:’f({")}
1 1
1
:?(1—exp[—szj§dg'f(g') ) (B19)
1

Substituting Eq(B18) in Eq. (B17) and using that
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" o JP . 9P o1
a, _—
ot (é“)%z, (CY)
n P with
P(0,0)=P(ay,{)=0,
//////////// S S S S S S S (g) (O-Yg)
TTT T DT T T T

P(o,1)=Pq(0),
FIG. 19. (a) A rectangular block an¢b) a spherical ball, squeezed against a .
rough substrate. wherePy(o) is assumed to correspond to a constant macro-

scopic contact pressuréPy(o)=356(oc—0py). Note that
P(0,¢) is defined only for &<o<oy. In Appendix B we
2 (= sin(soy) considered the limitry— o, but we now keepry (the yield
_f ds—— 2 =1 stress finite.
7 Jo S In Appendix B we have shown that

gives 5
; P(o §)=—2 sina
2 (= ' > h
le——J ds—sm(SUO) exp{—szj'{dg’f(g’)} Tyn=1
T Jo S 1
2 ¢ ’ ' : nmo
Thus, XeXF{_anJIdf a(g") Sm(a_y)’ (C2
P(§)=1—J=Efodsm where
T Jo S
_n7T(TO

&= .
n oy

Xex;{—szfgdg’ f(¢")

! Now, let us introduce the function,,{{) and P({)
Finally, let us defineg(g)zf(g)/aé and introducex=soy. which describe the fraction of the origindbr {=1) macro-
Thus, contact area where, under the magnificatipmoncontact,

2 (= sinx ¢ and contact with plastic yield has occurred, respectively.
P(g):;fo deexr{—xzfl dz’ g(g’)}, (B19)  Thus we have
Pel({)+ Pro ) + Ppi(£)=1, (C3

whereP¢({)=P({) was introduced in Appendix B and de-
scribed the fraction of the macrocontact area where elastic

APPENDIX C: ELASTOPLASTIC CONTACT THEORY contact occur on the length scalé{. We have shown in
FOR RANDOMLY ROUGH SURFACES Appendix B that

whereg(¢) is given by Eq.(B9).

In Sec. V and Appendix B we have considered the area
of real contact when an elastic body was squeezed against a
hard rough surface. We assumed only elastic deformation. In o
this Appendix we consider the more general case when botlfl & Similar way one can show that
elastic and plastic deformations occur. We consider two dif- ¢ P
ferent cases, where the solids hasenominally flat surfaces Pp({)=— f dz’' f(¢') a_(O'Y ). (CH

. . 1 g
as in Fig. 19a) (e.g., a rectangular block on a flat substrate
where the macroscopic contact pressatgeis constant, and  With these definitions it is easy to prove that the probability
(b) a curved surface as in Fig. @ (e.g., an elastic spherical conservation lawC3) is satisfied. First note that the average
ball squeezed against a nominally flat subsirathere the  stress(o), in the elastic contact area must be such that the
macroscopic pressurey(x), depends oIx. total load is independent of the magnificatiénThus

1. Nominally flat surface () AoPel($) + avAgP (L) = oA

Consider a rectangular block on a nominally flat sub-Or
strate. We define the avera@er macroscopicpressures
=Fyn/Ay, whereAqg=L? is the (apparent block-substrate () Pel({)=009— ayPp(). (Co)
contact area on the length scdle the linear size of the
block. Thus, the macroscopic pressure distributiByg

¢ JP
Pnon(§)=J1d§’ (&) 5,(047). (C4

If we multiply Eq. (C1) with ¢ and integrate oves we get
after some simplifications,

=8(oc—0y).
We assume that plastic yield occurs when the local pres- 5 [oy JP
sure reachesr= oy (the yield stress In this case, for 0 &_éfo dUUP(U,Z)If(Z)UY%(UY,O
<o<oy, the stress probability distributio®(o,¢) satisfies
Eq. (B5), or
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J”Yd P(,0)= fd U (gl @
o ooP(o,{)=0ot oy N { (()%(UY@) ot
:UO_UYPP|(§)- “ /qOhO = 0.001
Next, integrating Eq(C1) over o gives a®
Jd (ov JP L2
—f dGP(U,é“):—f(é“)[ (0.5)——=(ay.{) B
¢ Jo
or -12 \
oy oo JeP 9P , ®
| Maopo.0=1- [far e 0= o 1o]
8.
:1_Pn0n(§)_Ppl(§)- © 5
Thus f
= 4
s ¢ a
<0>§=J’ da’a’P(U,g")/ J do P(0,?{) 2t
1 1 ol
B o= 0yPy . .
a 1- I:)non_ l:)pl . 0 2 4 6

log §

Substituting this in Eq(C6) gives
FIG. 20. The functionga) P, and (b) Py describes the fraction of the

Pel({)=1=Pnoi{) —Pp({)- macroscopic contact area where elastic and plastic contact occur, when the
] system is studied at different magnificationsFor H=0.8, qo=10*m™?,
Using Egs.(C2), (C4), and(C5) we get and gohy=0.001 (solid line9 and gohy=0.01 (dashed lines Results are
. shown for E=10"Pa, oy=10° Pa, ando,=10*Pa. Note that in the
2 Sina, 4 , , present casé=1 correspond to the length scalg=27/qy~1 mm so that
Pnon:; Z n —€ex d¢ g’ the log¢<0 correspond to length scal&s>\,, and on these length scales
n=1 the solid block makegapparent contact with the substrate over the whole
(C7) block—substrate interfadsee Fig. 169)].
p sina,
Po = TV
this case, let us summarize the results abovg-gpace ¢
¢ =(.{). Equations(C7) and(C8) take the form,
1 exp{— Zf d¢’ g({’)D. (C8) a4)- Eq
2 & sina,
P ron=— 1—-ex °G C9
Note that whery . o= 2~ (1-exd — a7G(a)]), (C9
4 2 sinay, .
l:)non"—P I_’;n ey n =1, :_;nz (— 1)n (1 exd — aZG(q)])
independent ofry/oy, while (C10
where from Eq.(37),
n>1% Sln Cl’n 0'0
pl_’__z (-1 ot E(qu cos¢)|?
Y dq *C(q) di? | - G
Thus, in the absence of a short-distance cutoff, at short . .
length scale the local stress in the contact area equals Now, assume zero sliding velocity and a self affine frac-

i.e., each junction is in a state of incipient plastic flow. Wetal surface, withC(q) =0 for q<<qo. Writing g=qo{ we get
note, however, that under such conditions thermally activateffom Eq. (32),
creep motion will be very important, and the area of real o) 2 H 7Eqohy |2
contact will increase slowly with the time of stationary (—) G(qod)= ( s ) (LPA-H—1),
contact®*° This effect has a profound influence on friction 7 1-H14(1-»oy
dynamics(e.g., it is now believed to be the origin of earth- For metals this formula should approximately valid also
guakes but will not be discussed further here. for nonzero sliding velocities, since the elastic modul of met-
In the derivation above;=1 correspond to the macro- als depend much more weakly on the frequency than for
scopic sizel of the system. But, as mentioned earlisee  rubber. Note that the functior®,, Py, andP,,, depend on
Fig. 8(b)], sometimes there is a cut off ©(q) at some wave H (or, equivalently, on the fractal dimensi@=3—-H), on
vector qo>2m/L. In that case it is convenient to I¢t=1 oolay, and on thelasticity indexy= (E/oy)qohg. In Fig.
correspond to the length scale=2m/q,. Before treating 20 we show the dependenceRf and P, of the magnifica-
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tion £. We have used parameters which corresp@adghly) (qoho) ?E? H -

to a cubic steel blockl(=10cm), on a steel substrate. We  G(dol) = 802(1- 22 2(1-H) (£PAW—1),
assumeo,=10"Pa, oy=10°Pa, andE=10'"Pa. The sur- 0
face roughness of the substrate is assumed to be self affise that

fractal with gohy=0.001 (solid lines and 0.01 (dashed 5 12
lines). The theory does not depend qgg directly (but only ~ 4oo(1- v ( 1= H) H-1
on the productyghy), but if we choose the cutoff wave vec- ¢ dohoE mH

tor go=10"m™* (corresponding to the typical cutoff length
No=2mlqo of order ~1 mm), then goho=0.001 and 0.01 (apparent area of contact on the length scale(where ¢
correspond to the rms roughndsg=0.1 and 1um, respec- =)\o/)\) becomes

tively. In the calculations we have used the fractal exponent

where we have assume®1. But oo=Fy/Ay so that the

H=0.8. Note that for the casgyh,=0.01 plastic deforma- 4F\(1—1%) (1—H\Y2/ \\17H
tion starts already at the cutoff lengklg=~1 mm, and on the AN)=AoPel() = JohoE H o .
length scale\ ,/10~0.1 mm all junctions have yielded plas- (C13
tically. However, whergyhy=0.001 plastic yield start when

 is of order a few 1000, corresponding to distances of ordeLf No=L we getqp=2/L and

Ao/{~0.1um. On the lengtih~20 A (corresponding ta 2F\L(1—2?) [1—H\Y2/\\17H

~3x10°) all asperities have yielded plastically. However, — A(\)= 7Ehy ( g ) (E) (C19

on this short length scale steel may be much harder than the

macroscopically observed yield stressus, for “real” steel ~ Note that the contact are®(\) is proportional to the load,

mainly elastic deformation is likely to prevail whegqyh,  and that it decreases continuously towards zera-af. If

=0.001. the upper cut off length ; is independent of the side of the
One can easily estimate analytically the characteristisystem, then the area of conta#qf\) is also independent of

length scale\y/¢, at which, say~50% of the junctions have L [see Eq(C13)]. However, if\o=L then the area of con-

yielded plastically. According to Eq(C8) this is the case tactA(\) depends on the side of the system, increasing as

when ~LH with increasingL.
2 h 2 Finally, let us compare the prediction of the present
(ﬂ) G(qd)= H ( Edo ‘2)77 ) (F21-H) 1) theory with the contact theory of Greenwood. In the latter
Oy 1-H14(1=v)oy theory the surface is assumed to be covered by asperities
~1 with identical radius of curvatureR, and with a Gaussian
hight distribution with the rms widtln,. We can(approxi-
or mately describe this case by assuming a surface with rough-
1—H [ oy4(1—1?)\ 2] M20-H] ness only on a single lateral length scalg=2w/q;. We
~|1+ H ( Eqghom ) , (C12  take
which, in the present case, givés=1 and 10 for qgh, C(a)=[(h*)/2mq,16(d—0y)
=0.01 and 0.001, respectively, in relative good agreemendq that

with Fig. 20.

Surfaces for engineering applications usually experience
repeated sliding over the same area. Thus, for surfaces with
large surface roughness, after repeated sliding the surfa
asperities will be smoothened o(liy plastic deformation
and, finally, mainly elastic deformation will occur in the con-
tact areas. The present theory can be used to estimate t
length scale on which the initial plastic deformation occurs
(see above

Let us consider the “elastic limit’oq/oy—0, where
Pp=0. In this case we can treat,=x as a continuous vari-

able so that G(q)= M
2 (= sinx 2 8%
Pelzl_Pnon:; o dXTeXF{_X Gla]

f d2q C(q)=(h?)=h

Wote that if q1=2m/\,, then the asperity curvature R/
~q?h,, and the asperity hight fluctuatioA=h, so that
F'A/R)”zwahl. The contact area in the Greenwood theory
I& of order (A/R) " YA(F\/E)~(q;h;) " L(Fy/E). We will
now show that essentially the same result follows from the
present theory. Using E4C11) we getG(q)=0 if q<q,
and

(1-1%)?=Gy

for g>q,. The fraction of the areA, where contact occurs

Since in most cases of interestee Appendix BG(q)>1 IS diven by

we get 0o 2 < Sina, 2

pl:O'_Y+_E —eia”G. (ClS}

P=P,+P
Tn=1 n

2 o0
Peﬁ—f dxexd —x*G(q)]=[7G(q)] "
7o In the elastic limitoy/oy—0 we can treak=«, as a con-
If we assume a frequency independent elastic modulus, themuous variable, so that EqC15 gives P(q)=1 for q
Eq. (37) gives <(q;, while
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2 (¢ sinx .,
P=—f dx——e ¥
T Jo X

2 0
~—J dxe XCo=(7Gy) 12
7 Jo

for g>q,. Here we have assumed th@p>1. ThusA(\)
=A, for A\>N, while for A<\,

oo (1—1/2) 8 1/2
A()\):AOEW .

ko

SinceoyAg=Fy the normal load, we get 0

logy ——

AN)= FIG. 21. The kinetic friction coefficient of rubber sliding on a rough, hard

substratg'schemati.

Fn(1—27) (812

qlhlE o
for A<\, which, except for a factor of order unity, is iden-
tical to the results of Greenwodd.Note, in particular, that h . _ o _
the area of real contact oportionalto the load. However, U—¢"U, sinceu “points” in the z-direction. Since the nor-
in contrast to the case of self affine fractal surfackg)) mal surface stress is related to the perpendicular surface
does not depend or (for A<\ ;). displacementi via

Next, let us consider the fraction of the contact area

where plastic yield has occurred. As before, we expect about U=J d?x’ K(x=x")a(x"),

50% of the contact area to have yielded plastically when . _ _
where, from dimensional arguments~1/|x—x’'|, it fol-

7o) 2 lows thato— " 1o under rescaling. Thus, the total load
(U_Y> Go~1 Fy=Ao—YHEy. Assuming Fy~A" this gives A"
— YMA". On the other hand we know that— £?A which
gives A"— 72"A". Thus, Zi=1+H which gives Eq.(2).
This result differs from the conclusion arrived at in this pa-
Yy=Eqihy/oy=~1, per. However, the argument given_ above n(_aglects the upper
No and lower\; cutoff lengths, which occur in all real sys-
which, within a factor of order unity, is the same result astems. If there would be no low distance cutoff, the calcula-
derived from the Greenwood theory. tions presented in this paper predict that the area of real
contact vanishes. This is easy to understand physically as
follows: Let us first consider the system on the length scale
2. Curved surface No, the upper cutoff length. On this length scale the system
makes (apparent contact with the substrate over an area

. . . No) (see Fig. 4. Let us now study an asperity contact area
curved surface, e.g., a ball, is squeezed against a nominal (No) ( g. 4 y perty

: - . nder increasing magnification. If we magnify by a factor of
flat substrate. In this case the macroscopic pressure in thée: 10 then we will observe smaller sized “asperities” and
contact reg?onao(x), will vary with the spatial chatiorx, “cavities.” In general, the local pressure will not be large
ll‘rom g. nt1aX|mumt atﬁfh‘? center: tohzetro ?:1 thetr;])erépheryt. I t?eenough to fill out all the cavities so the area of contact on the
ong-distance cut ok Is much shorter than the diameter ot ngth scalex <\ will be smaller than théapparentarea of
the contact area, the theory presented above is still valid i

; . . ontact on the length scale, (see inset in Fig. # This
the pressuraro—wo(x).. Thus, in this case the functions process will repeat itself as we increase the magnification
Pei(¢,x) andPy(¢,x) will depend onx.

further, and the area dfapparent contact will continue to
decrease with increasing magnification. If there is no short-
distance cutoff the area of contact will decrease towards zero
as the magnificatiof— oo.

Roux et al!® derived the relation2) by scaling argu- We note that the arguments presented by Roux do not
ments as follows. Assume, for simplicity, that one of theexclude that the area of real contact may vanish, but in that
surfaces is flat and elastic, while the other is rigid and has aase the analysis is itself irrelevant. Assume now that a short
self affine fractal surface profile. Let us rescale the spatiatlistance cutoffA; exist. Let us consider the system under
coordinatesx— ¢x, y—{y, andz—¢"z and note that the increasing magnification. We have to distinguish between
surface is statistically invariant under this operation. Thetwo different cases. If the local stress which acts in the con-
contact aresh— /A as it lies in the &,y) plane. The local tact area reaches the yield stressof the softer of the two
perpendicular deformation of the surface must rescale as solids before we have reached the cutoff length saale

which gives

Assume now that an elastic body with a nominally

APPENDIX D: COMMENTS ON CONTACT THEORIES
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then plastic deformation will occur everywhere in the afea APPENDIX E: RUBBER FRICTION AT HIGH SLIDING

of real contact andA will be simply determined by the load VELOCITY

and the vyield stresgy via the standard relatioRy= oyA.

Thus, in this case the area of real contact is proportional to  In this Appendix, | study the friction at high sliding ve-
the load. On the other hand, if the short-distance cut-off idocities, where emission of sound waves from the sliding
reached before the local stress has reached the yield stréggerface contributes in an important manner to the friction
oy, then we expect mainly elastic deformation, but in thisforce. For high sliding velocities we cannot perform the ex-

case too the area of real contact will mearly) proportional
to the load(see Appendix €

el

- pL

2
L R S
(CL) q+i0

pansion(11) but we have to use the full expression fdr,,
given by Eq.(10),

1/2

M=o =
22 pet S(g,0)

o
o =2 2 2
T PET (3) —-29°| +49°

Cr

2
R Y S
(CL) g-+i0

- (ED)

T o) 2
il B S
2[(CT) a+10

Using this expression in the formulas derived in Secs. IV and Roberts, Rubber Chem. Techn6t, 3 (1992; S. P. Arnold, A. D. Roberts,

V gives the friction coefficient for arbitrary sliding velocity.
Here we consider only the limit whea=uvq,— %, where
—i

zzZ

oo (E2)
This equation is valid ib>c_ . For very high velocities we
are the the glassy region whece can be treated as a con-
stant(i.e., independent ab). Of course, in reality we expect
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