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Abstract

I study how the contact area and the work of adhesion between two elastic solids with randomly

rough surfaces depend on the relative humidity. The surfaces are assumed to be hydrophilic,

and capillary bridges form at the interface between the solids. For elastically hard solids with

relatively smooth surfaces, the area of real contact and therefore also the sliding friction are

maximal when there is just enough liquid to fill out the interfacial space between the solids,

which typically occurs for dK ≈ 3hrms, where dK is the height of the capillary bridge and hrms
the root-mean-square roughness of the (combined) surface roughness profile. For elastically

soft solids, the area of real contact is maximal for very low humidity (i.e. small dK), where the

capillary bridges are able to pull the solids into nearly complete contact. In both cases, the work

of adhesion is maximal (and equal to 2γ cos θ , where γ is the liquid surface tension and θ the

liquid–solid contact angle) when dK ≫ hrms, corresponding to high relative humidity.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

When two solids are in close contact capillary bridges

may form at the interface, either as a result of liquid-

like contamination layers (e.g. organic contamination from

the normal atmosphere) or water condensation in a humid

atmosphere, or intentionally added thin fluid layers, e.g. thin

lubrication films. For wetting liquids strong negative pressure

will prevail in (short) capillary bridges, which will act

as an effective relative long-ranged attraction between the

solids [1]. In many cases, in particular for hard solids

and with rough surfaces, the contribution to the wall–wall

attraction from capillary bridges may be much larger than

the contribution from the direct wall–wall interaction, e.g. the

van der Waals interaction between the solids. The capillary

bridge mediated wall–wall interaction has a huge number

of important applications, e.g. for granular materials [2],

insect or tree frog adhesion [3–5], head/disk systems [6] and

microelectromechanical systems (MEMS) [7], where they may

trigger permanent adhesion and device failure.

The influence of capillary bridges on adhesion is well

known to all of us. Thus, it is possible to build sand castles

from humid or slightly wet sand but not from dry sand or sand

flooded with water. Similarly, it is well known that very flat

surfaces, such as those of gauge blocks (steel blocks with the

roughness amplitude of the order of ∼25 nm when measured

over a macroscopic area, e.g. 50 cm2), adhere with strong

forces resulting from capillary bridges formed from organic

contamination or water. Thus it may easily be shown that the

force to separate two gauge blocks may strongly increase if one

exposes the surfaces to (humid) breath (for strong adhesion, the

fluid layer (organic or water) should be at least several times

larger than the surface root-mean-square roughness amplitude,

i.e. in the present case of the order of 100 nm, or more; see

below). Finally, the fact that a fly can walk on a vertical glass

window is due to capillary bridges formed at the tip of many

thin hair-like fibers, which cover the attachment organs of the

fly; see figure 1. Without the fluid (injected via channels in the

fibers) adhesion would probably be impossible to most surfaces

because too much elastic energy is necessary to bend the tips of

the fibers into atomic contact with the rough substrate, which

is necessary for strong adhesion without fluids. (The tips of the

hair covering the attachment pads of some lizards (e.g. geckos)

and most spiders are much thinner that those of a fly, and

can easily be bent to make atomic contact even to very rough

surfaces; in these cases no liquid is injected by the animal into

the contact area.)

Capillary adhesion between solids with randomly rough

surfaces has been studied so far mainly using the Greenwood–

Williamson contact mechanics theory [8]. In this theory the

asperities on the rough surfaces are approximated by spherical

cups and the long-range elastic coupling is neglected. It has
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Figure 1. The attachment organ of a fly. At the tips of the hairs on
the attachment pads occur thin elastic plates. The fly injects a liquid
into the space between the plate and the substrate. The resulting
capillary bridge makes it possible for the fly to adhere to surfaces
with large roughness. To very rough surfaces, the fly can also
‘adhere’ using the claws on the legs. Reproduced with permission
from S Gorb and J Berger (Max Planck Institute, Germany).

recently been shown [9, 10] that for surfaces with roughness on

many length scales the GW theory (and other asperity contact

theories such as the theory of Bush et al [11]) fail qualitatively

to describe e.g. the area of real contact and the interfacial

separation as a function of the load.

When two elastic solids with rough surfaces are squeezed

together, the solids will in general not make contact

everywhere in the apparent contact area, but only at a

distribution of asperity contact spots [12–15]. The separation

u(x) between the surfaces will vary in a nearly random way

with the lateral coordinates x = (x, y) in the apparent contact

area. When the applied squeezing pressure increases, the

average surface separation ū = 〈u(x)〉 will decrease, but

in most situations it is not possible to squeeze the solids

into perfect contact corresponding to ū = 0. In thermal

equilibrium, capillary bridges are formed at the wall–wall

interface in those regions where the separation u(x) is below

the Kelvin length dK, which depends on the relative humidity

and on the liquid contact angles with the solid walls.

Here I will present a general theory of capillary adhesion

between elastic solids with randomly rough surfaces. The

study is based on a recently developed theory for the (average)

surface separation ū as a function of the squeezing pressure

p. The theory shows that for randomly rough surfaces

at low squeezing pressures p ∼ exp(−αū/hrms), where

α ≈ 2 depends (weakly) on the nature of the surface

roughness but is independent of p, in good agreement with

experiments [16]. The GW contact mechanics theory (and

the more accurate theory of Bush et al) instead predicts p ∼

ū−a exp[−b(ū/hrms)
2] (where a and b are positive numbers),

in strong disagreement with numerical simulations [17–19] and

experiment [16].

The theory presented below is based on solid and fluid

continuum mechanics. Thus it cannot be strictly applied

when the Kelvin distance dK becomes of the order of the

molecular size, i.e. smaller than ∼1 nm. The limiting case

rK

p
0

Figure 2. Capillary bridges formed at two asperity contact areas. At
thermal equilibrium, the radius of curvature of the capillary bridge rK
is given by the Kelvin radius. The capillary bridges will exert an
attractive force Fa on the block. The sum of the capillary force Fa
and the external load F0 = p0A0 (where A0 is the nominal surface
area) must equal the repulsive force arising from the area of real
contact between the solids.

of molecular thin fluid films must be treated using atomistic

methods, e.g. molecular dynamics (see, e.g., [20, 21]).

2. Theory

Consider the frictionless contact between two elastic solids

with the Young’s elastic modulus E1 and E2 and the Poisson

ratios ν1 and ν2. Assume that the solid surfaces have the

height profiles h1(x) and h2(x), respectively. The elastic

contact mechanics for the solids is equivalent to those of a rigid

substrate with the height profile h(x) = h1(x) + h2(x) and a

second elastic solid with a flat surface and with the Young’s

modulus E and the Poisson ratio ν chosen so that [22]

1− ν2

E
=
1− ν21

E1
+
1− ν22

E2
. (1)

Consider an elastic block with a flat surface in contact with

a hard rough substrate. We consider humid conditions (vapor

pressure Pv) and assume that the liquid wet the surfaces. In

this case, in the asperity contact regions liquid capillary bridges

will form (see figure 2), where the meniscus radius rK is given

by the Kelvin equation

rK = −
γ v0

kBT ln(Pv/Psat)
, (2)

where v0 is the molecular volume in the liquid. Thus, the

thickness of the liquid film is given by

dK = rK(cos θ1 + cos θ2), (3)

where θ1 and θ2 are the liquid contact angles on the two solid

surfaces.

For water at T = 300 K, γ = 0.073 J m−2 and v0 ≈

3× 10−29 m3 so that

rK ≈ −
0.53 nm

ln(Pv/Psat)
.

Thus, if water wets the surfaces (i.e. θ1 = θ2 = 0) the thickness

of the liquid film is given by the Kelvin length

dK ≈ −
1.06 nm

ln(Pv/Psat)
. (4)
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Figure 3. A rubber block (dotted area) in adhesive contact with a
hard rough substrate (dashed area). The substrate has roughness on
many different length scales and the rubber makes partial contact
with the substrate on all length scales. When a contact area is studied
at low magnification it appears as if complete contact occurs, but
when the magnification is increased it is observed that in reality only
partial contact occurs.

We now use the contact mechanics formalism developed

elsewhere [17, 23–26], where the system is studied at different

magnifications ζ ; see figure 3. When the system is studied at

the magnification ζ it appears as if the contact area (projected

on the xy-plane) equals A(ζ ), but when the magnification

increases it is observed that the contact is incomplete, and the

surfaces in the apparent contact area A(ζ ) are in fact separated

by the average distance ū(ζ ), see figure 4. Let u1(ζ ) be

the (average) height separating the surfaces which appear to

come into contact when the magnification decreases from ζ

to ζ − 1ζ , where 1ζ is a small (infinitesimal) change in the

magnification. u1(ζ ) is a monotonically decreasing function of

ζ , and can be calculated from ū(ζ ) and A(ζ ) using (see [17])

u1(ζ ) = ū(ζ ) + ū′(ζ )A(ζ )/A′(ζ ). (5)

We assume that liquid occurs in the apparent contact areas

when the separation u1(ζ ) is smaller than (or equal to)

the Kelvin distance dK. Assume that this occurs for the

magnification ζ = ζK so that

u1(ζK, p0) = dK, (6)

where we have indicated that the separation u1 depends on

the nominal pressure p0. In the liquid bridge is a negative

pressure p = −pK with pK = 2γ /dK. The liquid occupies the

(projected) surface area 1A = A(ζK) − A(ζ1), where A(ζ1) is

the area of real contact observed at the highest magnification

ζ1. Thus the attractive force

Fa = pK1A =
2γ

dK
[A(ζK) − A(ζ1)] . (7)

We define pa = Fa/A0. We will calculate A(ζ ) by using a

mean-field type of approximation, where instead of including

the non-uniform distribution of capillary forces acting at

the block–substrate interface we assume that the effective

squeezing pressure is p = p0 + pa, where p0 = F0/A0 is the

applied squeezing pressure (which is negative during pull-off)

(see figure 2 and also section 5).

magnification ζ

elastic solid

rigid solid

ζ1

u(ζ)
_

Figure 4. An asperity contact region observed at the magnification ζ .
It appears that complete contact occurs in the asperity contact region,
but upon increasing the magnification to the highest resolution
(magnification ζ1) it is observed that the solids are separated by the
(average) distance ū(ζ ).

Let us apply a pull-off force F0 = −Fpull to the block. We

define the work of adhesion per unit area as

w =
1

A0

∫ ∞

u0

du Fpull(u) =

∫ ∞

u0

du [pa − p(u)]. (8)

p(u) is the repulsive pressure from the substrate at the

separation u = ū between the average substrate surface plane

and the average position of the bottom surface of the block. u0
is the equilibrium separation when Fpull = 0, i.e., p(u0) = pa.

Let us now study the limiting case when the space between

the solids is filled with liquid, i.e. no dry area. We also assume

that the area of real contact A(ζ1) is negligible compared to

the nominal contact area A0. In this case the attractive pressure

pa = 2γ /dK must be balanced by the repulsive asperity contact

pressure, which for separation u & hrms is given by

p(u) = β E∗e−αū/hrms (9)

where α and β are numbers which depend on the surface

roughness but which are independent of p and of the elastic

properties of the solids [18]. Thus

2γ

dK
= β E∗e−αu0/hrms , (10)

or

u0 =
hrms

α
log

β E∗dK

2γ
. (11)

Since the capillary pressure is pa = 2γ /dK for u < dK and

zero otherwise, we get work of adhesion

w =

∫ ∞

u0

du [pa − p(u)]

=
2γ

dK
(dK − u0) −

β E∗hrms

α
e−αu0/hrms . (12)

Using (11) this gives

w = 2γ

[

1−
hrms

αdK
log

(

eβ E∗dK

2γ

)]

. (13)
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For self-affine fractal surfaces we have [18] α ≈ 2 and β ≈

0.4q0hrms, giving

w ≈ 2γ

[

1−
hrms

2dK
log

(

q0hrmsE
∗dK

2γ

)]

, (14)

where q0 is the roll-off (or cut-off) wavevector of the surface

roughness power spectrum.

The analysis above has assumed that thermal equilibrium

occurs at any moment in time during pull-off, which requires

a static or slowly propagating debonding crack. In this case

liquid will condense or evaporate at the interface in such a way

as to always maintain the Kelvin radius rK = dK/2 for the

radius of curvature of the liquid meniscus. However, during

fast pull-off negligible condensation or evaporation occurs, and

the fluid volume at the interface, rather than the Kelvin radius,

will be constant during pull-off. If A(u) is the area covered by

liquid when the average surface separation is u, then volume

conservation requires A0u0 = A(u)u or A(u)/A0 = u0/u. In

this case

∫ ∞

u0

du pa(u) =

∫ ∞

u0

du
2γ

u

A(u)

A0
= 2γ.

When thermal equilibrium occurs during pull-off the same

integral becomes 2γ (1 − u0/dK). Thus, when u0/dK ≪ 1,

the whole interface is filled with fluid, and the adiabatic pull-

off (constant meniscus radius) and fast pull-off (constant fluid

volume) give nearly the same result for the work of adhesion,

assuming that one may neglect viscous energy dissipation in

the fluid during the fast pull-off (which is responsible for the

suction-cup type of effective adhesion).

In general, for most solids with covalent, ionic or metallic

bonds E ≈ 1011 Pa, and in the normal atmosphere (where dK is

of nanometer size) capillary adhesion will only be observed if

hrms is at most a few nanometers. In fact, assuming that (14) is

valid we get w = 0 if

dK < dc =
hrms

2
log

(

q0hrmsE
∗dc

2γ

)

. (15)

Since dc only depends logarithmically on the parameters q0,

E∗ and γ , the critical Kelvin distance (or humidity), below

which the adhesion is very small, depends weakly on these

parameters. For example, if hrms ≈ 2 nm, and with the

roll-off wavevector q0 ∼ 107 m−1 (as for the lower curve in

figure 5), we get log(q0hrmsE
∗dK/2γ ) ≈ 5 so that dc ≈ 5 nm,

corresponding to ∼80% relative humidity.

As another application of (14), let us study the case where

E∗ = 1 GPa (as typical for glassy polymers) in contact with

a hard rough substrate with hrms = 1 µm and q0 = 104 m−1.

Using γ ≈ 0.1 J m−2 (14) gives that w > 0 only if dK >

10 µm. More generally, (14) shows that capillary adhesion

will only manifest itself as long as the the Kelvin length dK
is (at least) a few times the root-mean-square amplitude of the

(combined) substrate roughness profile. This statement only

holds for elastically hard enough solids—for very soft solids

the negative capillary pressure can pull the solids into close

contact, in which case (14) is no longer valid; see section 3.2.

Figure 5. The surface roughness power spectrum of two surfaces.
The surface with the root-mean-square (rms) roughness 6 µm is a
self-affine fractal with the fractal dimension Df = 2.2. The other
surface has the rms roughness 2.4 nm and is assumed to be randomly
rough.

3. Numerical results

We will apply the theory to two cases, namely the contact

between elastically hard solids, e.g. silicon as relevant for

microelectromechanical systems (MEMSs), and elastically

soft systems such as rubber or biological adhesive pads. For

the case of hard solids we will assume that the (combined)

rough surface has the surface roughness power spectrum C(q)

shown in figure 5, bottom curve. This power spectrum was

obtained from the surface topography, h(x), measured [27] for

a polysilicon surface, using [28]

C(q) =
1

(2π)2

∫

d2x 〈h(x)h(0)〉e−iq·x.

The root-mean-square (rms) roughness of this surface is

2.4 nm. For the case of elastically soft solids we will assume

that the combined surface has the power spectrum shown in

figure 5, top curve. This is the power spectrum of a self-affine

fractal surface with the rms roughness 6 µm and the fractal

dimension Df = 2.2.

3.1. Elastically hard solids

In figure 6 we show the stress as a function of the (average)

distance between the surfaces, ū, during separation for several

different relative humidities (RHs), 0.95, 0.925, 0.9 and 0.875.

The elastic solid has the Young’s modulus E = 82 GPa and

the Poisson ratio ν = 0.22. The area under the curves in

figure 6 determines the work of adhesion, which is shown in

figure 7. The numerical results in figure 7 are in relatively good

agreement with the (approximate) analytical result (14) (curve

denoted by ‘approx’ in figure 7).

In figure 8 we compare the work of adhesion, as a function

of the relative humidity, with the experimental data of DelRio

et al [29, 30], obtained from microcantilever experiments. The

circles are experimental data and the squares calculated results

(from figure 7). The experimental system is for polysilicon

surfaces with the combined surface having the root-mean-

square (rms) roughness [29] ≈2.3 nm, while in the calculation

4



J. Phys.: Condens. Matter 20 (2008) 315007 B N J Persson

Figure 6. The stress as a function of the logarithm of the (average)
separation ū during separation. The area under the curves determines
the work of adhesion. For a hard surface with the root-mean-square
roughness hrms = 2.4 nm in contact with an elastic solid (with the
Young’s modulus E = 82 GPa and Poisson ratio ν = 0.22) with a
flat surface. Results are shown for the relative humidities (RHs) 0.95,
0.925, 0.9, 0.875.

Figure 7. The work of adhesion as a function of the inverse of the
height dK of the capillary bridges. For a hard surface with the
root-mean-square roughness hrms = 2.4 nm in contact with an elastic
solid (with the Young’s modulus E = 82 GPa and Poisson ratio
ν = 0.22) with a flat surface. The square data points are the
calculated results for the relative humidities (RHs) 0.95, 0.925, 0.9,
0.875, and the solid line a fit to the data. The line denoted by
‘approx’ is given by (13) with α = 1.87 as calculated [17] from the
measured surface roughness power spectrum.

we have assumed the same system as above where the rough

surface has the rms roughness hrms ≈ 2.4 nm.

In figure 9 I show the calculated work of adhesion as a

function of the relative humidity. In the calculation I have

assumed hard surfaces with the root-mean-square roughness

hrms = 2.4 (from figure 8) and 3 nm. The power spectrum

of the second surface was obtained from the original power

spectrum (bottom curve in figure 5) by scaling it with a factor

of (3/2.4)2. The slope of the rms = 3 nm line is about 25%

larger than for the rms = 2.4 nm curve. This is just the ratio

between the two rms values and agrees with the prediction

of the (simplified) theory, equation (14), which shows that

the slope of the work of adhesion curve scales approximately

linearly with the rms value. This prediction is very different

Figure 8. The work of adhesion as a function of the relative
humidity. The circles are experimental data (from [29]) and the
squares calculated results. In the calculation we have assumed a hard
surface with the root-mean-square roughness hrms = 2.4 nm in
contact with an elastic solid (with the Young’s modulus E = 82 GPa
and Poisson ratio ν = 0.22) with a flat surface. The square data
points are the calculated results for the relative humidities (RHs)
0.95, 0.925, 0.9, 0.875.

Figure 9. The work of adhesion as a function of the relative
humidity. In the calculation we have assumed hard surfaces with the
root-mean-square roughness hrms = 2.4 and 3 nm in contact with an
elastic solid (with the Young’s modulus E = 82 GPa and Poisson
ratio ν = 0.22) with a flat surface. The square data points are the
calculated results and the lines smoothing cubic splines.

from the GW theory prediction, which indicates much larger

change in the work of adhesion.

In the present case the theory predicts that the work of

adhesion per unit area, w, vanishes for RH < 0.87 (see

figure 8) or, equivalently, for the capillary heights dK < 8 nm

(see figure 7). In the experiment w is indeed very small for

RH < 0.87 but not zero (see figure 8), and we attribute

this difference between theory and experiment to two different

effects.

(1) Finite size effect. The theory is for an infinite system

while the experimental system is finite, and in the present case

in fact quite small (the crack-tip process zone has a total area

of only ∼100 µm2; see [31]). A finite pull-off force due to

capillary bridges will in reality always occur, even in the limit

of very low RH, where (for a small system and solids with

high elastic modulus) a single asperity (or just a few asperities)

5
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Figure 10. The area of real contact as a function of the Kelvin
capillary width dK. For a hard surface with the root-mean-square
roughness hrms = 2.4 nm in contact with elastic solids with the
Poisson ratio ν = 0.22 and the Young modulus E = 82 GPa. The
(nominal) squeezing pressure p = 4 MPa.

may be in contact—in this case a (small) capillary bridge can

form at the asperity, giving a non-zero pull-off force. For a

finite-sized system this will result in a non-zero work per unit

area, w, to separate the solids (which may be non-negligible

for micro- and nano-sized systems), but in the thermodynamic

limit (infinite-sized system, as assumed in the theory) w would

of course vanish. The small contact between small, elastically

hard, solids also implies that there will be large fluctuations

in the pull-off force between different realizations of the same

system. This has indeed been observed by Zwol et al [32], who

found that the pull-off force (at low relative humidity) varied by

a factor of∼2 (or more), when the same microsized object was

brought into contact with the same substrate surface at different

locations (see also section 5).

(2) Van der Waals interaction. One can easily show that

the long-ranged van der Waals interaction will always give a

non-zero work of adhesion. The reason for this is that the

(repulsive) contribution to the wall–wall interaction from the

elastic deformation of asperities decays as ∼ exp(−αū/hrms)

(or faster, if finite size effects are taken into account) with

increasing wall separation ū, while the (attractive) van der

Waals interaction decays slower as ∼1/ū3 and the total

interaction will always be attractive for large enough separation

ū. With only the capillary bridges the wall–wall interaction is

predicted to be repulsive (for all wall–wall separations) at low

relative humidity. Combining the van der Waals interaction

and the capillary contribution will give a non-zero work of

adhesion even for small relative humidity, which still depends

on the relative humidity. I plan to study this in more detail in

the future.

It is interesting to compare (14) with the predictions of the

Greenwood–Williamson (GW) theory of contact mechanics.

As pointed out before, this theory fails qualitatively when

roughness occurs on many length scales, and DelRio et al

found that the GW theory strongly underestimate the work of

adhesion. The main reason for this failure is not the asperity

approximation (which, however, also is a severe approximation

in the present case) but the neglect of elastic coupling between

the contact regions.

Figure 11. The dry and wet area as a function of the Kelvin capillary
width dK. For a hard surface with the root-mean-square roughness
hrms = 2.4 nm in contact with elastic solids with the Poisson ratio
ν = 0.22 and the Young modulus E = 82 GPa. The (nominal)
squeezing pressure p = 4 MPa.

The separation of two solids usually occurs via interfacial

crack propagation, which depends on the work of adhesion.

However, the sliding friction is determined mainly by the area

of real contact. In figure 10 we show the area of real contact as

a function of the Kelvin length dK. The (nominal) squeezing

pressure is p = 4 MPa. Note that the area of real contact

is maximal at dK ≈ 7 nm, which corresponds to the point

where there is just enough fluid to fill the space between the

solids. This is illustrated in figure 11, which shows the wet

(and dry) area as a function of the Kelvin length dK. Note that

for dK > 7 nm the interface is filled with liquid. In this case

the negative pressure 2γ /dK will prevail (nearly) everywhere

at the interface and the area of real contact will therefore be

proportional to 1/dK, which is indeed the dependence of A/A0
on dK observed in figure 10 for dK > 7 nm. In fact, we can

accurately describe the behavior of the contact area for large

and small dK. Thus, when dK = 0 no liquid occurs at the

interface, and since the applied (squeezing) pressure p0 is very

small the area of real contact is linearly related to p0 according

to
A

A0
= αp0

where α can be calculated from the surface roughness

power spectra and the effective elastic modulus as described

elsewhere [23, 25]. We get α = 3.1× 10−10 Pa−1, which gives

the limit A/A0 ≈ 1.24× 10−3 as dK → 0, in good agreement

with figure 10.

In the opposite limit of large dK (nearly) the whole

interface is filled by fluid so that the effective pressure acting on

the block is the sum of the applied pressure p0 and the capillary

pressure 2γ /dK, giving

A

A0
= α

(

2γ

dK
+ p0

)

.

This relation (denoted ‘fully wet interface’) is shown in

figure 10 and agrees very well with the numerical result for

dK > 7 nm.

6
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Figure 12. The area of real contact as a function of the logarithm of
the Kelvin capillary width dK. For a hard surface with the
root-mean-square roughness hrms = 6 µm in contact with elastic
solids (with flat surfaces) with the Poisson ratio 0.5 and several
different Young moduli, E = 3, 10, 30, 100 and 300 MPa. The
(nominal) squeezing pressure p = 0.1 MPa.

3.2. Elastically soft solids

Consider the contact between an elastically soft solid with a

flat surface and a hard, randomly rough, substrate with the

power spectrum shown in figure 5, upper curve. This system

exhibits more complex and interesting behavior than the case

of elastically hard solids studied in the last section. Thus,

we find that when the relative humidity decreases, resulting

in a higher negative pressure in the capillary bridges, there

may be a strong increase in the area of real contact because

of elastic deformations of the solid walls, which are pulled

into closer contact by the capillary adhesive forces. This is in

sharp contrast to the case of hard solids (with relatively smooth

surfaces) studied above, where the contact area was maximal

when there was just enough liquid to fill the space between the

(almost) undeformed solid walls.

Figure 12 shows the area of real contact as a function of the

logarithm of the Kelvin capillary width dK, for a hard surface

with the root-mean-square roughness hrms = 6 µm, in contact

with elastic solids (with flat surfaces) with the Poisson ratio

0.5, and several different Young moduli, E = 3, 10, 30, 100

and 300MPa. The (nominal) squeezing pressure p = 0.1MPa.

Note that for low enough RH (i.e. for small enough capillary

distance dK) the area of real contact increases rapidly with

decreasing RH. This results from the strong capillary bridges

pulling the solids into close contact. As expected, this effect

start at higher and higher RH as the elastic modulus of the

solids decreases. For the stiffest solid, E = 300 MPa, the area

of real contact does not increase when the RH is reduced even

to the point that the height of the fluid bridges is of molecular

size dK ≈ 0.5 nm (below which the continuum theory fails).

Figure 13 shows again the area of real contact but now as a

function of the logarithm of the average width, dav, of the water

layer between the surfaces. We define dav = V/A0, where V is

the volume of water between the surfaces and A0 the nominal

(or projected) surface area. This figure illustrates an interesting

effect: as the RH decreases, in some range of RH the amount

of liquid between the surfaces increases as the RH decreases,

Figure 13. The area of real contact as a function of the logarithm of
the average width, dav, of the water layer between the surfaces. For a
hard surface with the root-mean-square roughness hrms = 6 µm in
contact with elastic solids with the Poisson ratio 0.5 and several
different Young moduli, E = 3, 10, 30, 100 and 300 MPa. The
(nominal) squeezing pressure p = 0.1 MPa.

Figure 14. The dry and wet area as a function of the logarithm of the
average width, dav, of the water layer between the surfaces. For a
hard surface with the root-mean-square roughness hrms = 6 µm in
contact with elastic solids with the Poisson ratio 0.5 and the Young
modulus E = 10 MPa. The (nominal) squeezing pressure
p = 0.1 MPa.

i.e., water from the atmosphere condenses at the interfacial

region between the solids. The reason for this is that when the

RH decreases the surfaces are pulled together, which implies

that the wet interfacial area (where u(x) < dK) increases, and

this increase is so fast that the volume of liquid between the

surfaces increases in spite of the fact that the capillary height

decreases.

This effect is also illustrated in figure 14, which shows the

wet (and dry) area as a function of the logarithm of the average

width, dav, of the water layer between the surfaces.

In figure 15 we show the stress as a function of the

(average) interfacial separation ū, during pull-off. The area

under the curves (for positive pull-off stress) determines the

work of adhesion. Results are shown for elastic solids with

flat surfaces, and with the Young’s modulus E = 3, 10 and

100 MPa and the Poisson ratio ν = 0.5. The results are

for the Kelvin distance dK = 1 µm (corresponding to the

relative humidity (RH)≈ 0.999). Note that for the stiffest solid
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Figure 15. The stress as a function of the (average) separation ū
during separation. The area under the curves (for positive pull-off
stress) determines the work of adhesion. For a hard surface with the
root-mean-square roughness hrms = 6 µm in contact with elastic
solids (with the Young’s modulus E = 3, 10 and 100 MPa and
Poisson ratio ν = 0.5) with flat surfaces. Results are shown for the
Kelvin distance dK = 1 µm (corresponding to the relative humidity
RH ≈ 0.999).

E = 100 MPa the interaction is purely repulsive, i.e., the work

of adhesion vanishes. For the elastically softer solids the work

of adhesion is finite, but the pull-off stresses are much smaller

than for the hard smooth surfaces studied in section 3.1, while

the distances over which the pull-off force is non-negligible are

much longer, both effects reflecting the much larger fluid film

thickness (or Kelvin distance dK) in the present case. The work

of adhesion (i.e. the area under the curves in figure 15) for the

E = 3 MPa case is w = 0.11 J m−3 and for the E = 10 MPa

case we get w = 0.062 J m−3.

4. Applications

We present a few applications of the results presented above.

Consider first rubber friction on a wet glass surface in the

context of wiper blades. After rain or a car wash, the driver

of a car does not immediately stop the motion of the wiper

blades. In this case, as the water is removed by wiping and

evaporation, as a function of time a high friction peak, with a

friction considerably higher than the dry one, may be observed.

This time period of enhanced friction is denoted as the tacky

regime, and may prevail for several seconds. Experiments [33]

have shown that in the tacky regime the attraction from water

capillary bridges between the rubber and the glass substrate

pull the rubber into close contact with the substrate so that the

area of real contact is even larger in the tacky regime than

for the perfectly dry contact. Since the applied pressure in

the rubber–glass nominal contact area is very high in wiper

blade applications, typically of the order of MPa, the additional

contribution from the capillary bridges must be very large,

of the order of MPa, in order to explain the strong increase

(typically by a factor of two) in the friction. This implies

that the height of the capillary bridges d < 100 nm. This

also implies that the wiper blade glass–rubber friction may be

considerably enhanced in humid conditions, where capillary

bridges are formed spontaneously.

The high friction in the tacky region can block a wiper

system. Capillary adhesion can be reduced by surface

treatment of the rubber. Thus, halogenation results in a rubber

surface layer which is elastically much stiffer than the bulk

(by up to a factor of 100, see [34]) and will strongly reduce

the friction coefficient in the tacky region, e.g. from 3 (no

halogenation) to 1 (at 15% halogeneous concentration in the

surface region) [35]. The surfaces of wiper blades are almost

always exposed to halogenation. However, after a long time of

use this layer of modified rubber may be removed by wear.

Thus, the friction coefficient for very worn-out blades may

exceed 3.

Capillary bridges may also give rise to strongly enhanced

friction for lubricated rubber applications, if the lubrication

film is very thin everywhere (e.g. even at the boundary of the

nominal contact area). Thus, in a recent experiment [36], a

rubber block was slid on a smooth steel surface lubricated by

a drop of oil. In this case the oil film was everywhere very

thin d ≈ 300 nm, and the rubber–steel surface friction was

observed to increase from ∼1 to ∼3 when the oil drop was

added to the metal surface. In this experiment the applied

nominal pressure was rather small, about 0.01 MPa. The

capillary adhesive force can be estimated using 2γ /d ≈

0.3 MPa, where we used γ ≈ 0.05 J m−2. This is much larger

than the applied nominal squeezing pressure, but because of the

finite sliding speed (0.1 m s−1) one cannot assume that all the

fluid gets completely squeezed out from the asperity contact

regions [37], and therefore the increase in the sliding friction

will be smaller than indicated by the increase in the effective

normal load.

Capillary adhesion is very important in biological

adhesive systems used for locomotion. This has been studied in

detail for tree frogs [4, 5] and stick insects [38]. These animals

use smooth adhesive pads which are built from non-compact

materials and are elastically very soft. To adhere to surfaces

the animals inject a wetting liquid into the contact area.

Experiments for stick insects have shown that the nominal

frictional shear stress for sliding against smooth glass surfaces

increases when the fluid film thickness decreases, e.g. during

sliding long distances. During repeated sliding on the same

surface area, the friction decreases continuously as more

liquid accumulates on the surface—typically the frictional

shear stress dropped from 0.15 to 0.05 MPa as the film

thickness increased. Nevertheless, as expected, the nominal

pad–substrate surface contact area did not change much since

the work of adhesion (which determines the contribution to

the contact area from the adhesional interaction) may be

nearly constant (equal to 2γ ) if enough liquid occurs at the

interface, as indeed expected in the present case (note: the

insects usually need to move on surfaces much rougher than

the glass surface and must therefore inject much more liquid

at the pad–substrate contact area than is necessary for the

smooth glass surface). The pull-off force from the glass surface

was nevertheless observed to increase when the film thickness

decreased during repeated contact and pull-off. This is most

likely a viscosity effect: during separation of two closely

spaced solids separated by a thin fluid layer, fluid must flow

towards the center of the contact area, and during ‘fast’ pull-off

8
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this generates a strong negative pressure (effective adhesion)

in the fluid because of viscous dissipation in the fluid. In this

case, the thinner the fluid film the larger the peak force will be,

as seen in the experiments.

As a final application of the theory presented above, let

us consider the contact between the toe pad of a tree frog and

a smooth glass plate. This system has been studied in great

detail in [4]. At the toe pad–substrate interface occurs a wetting

liquid, which is likely to be of the order of ∼1 µm thick at the

edges of the toe pad–substrate contact regions (see [5]). Thus,

the negative capillary pressure 2γ /d ≈ 0.1 MPa. Because

of the low effective elastic modulus of the toe pad, it deforms

elastically so that a large fraction (about 50%) of the toe pad

comes into close contact (less than 5 nm) with the glass surface,

in spite of the fact that the natural height fluctuations of the

toe pad surface (on the length scale of ∼10 µm) are of the

order of ∼1 µm. The area of real contact manifests itself

experimentally as a finite static friction force.

5. Discussion

The theory presented in section 2 is a mean-field type of theory,

where the adhesive force Fa from the capillary bridges is taken

into account by adding an adhesive pressure pa = Fa/A0
to the external squeezing pressure p0 = F0/A0 acting on

the block (F0 is the normal load, which is assumed to act

uniformly on the top surface of the block). This is likely to

be an accurate approximation as long as a large fraction of

the non-contact interfacial region is filled with liquid, e.g. for

high relative humidity. However, for very low relative humidity

and for large surface roughness, liquid bridges may only occur

close to the outer edges of the asperity contact regions. If

the regions occupied by fluid are very small compared to the

diameter of the contact and non-contact regions, then we can

consider the fluid filled regions as crack-tip process zones, and

this limit can be studied using the adhesion theory developed

elsewhere [24, 39]. In this theory the interface is studied at

different magnifications, and an effective interfacial binding

energy (per unit area), γeff(ζ ), is introduced. If one assumes

that the continuum theory of capillary forces is still valid for the

small capillary bridges which occur at low RH then γeff(ζ1) =

2γ cos θ . However, most likely the continuum theory is not

valid for narrow (molecular sized) capillary bridges, and one

may have to treat γeff(ζ1) = 1γ as an empirical parameter to

be determined directly from experimental data.

In the theory developed in section 2 we always assumed

thermal equilibrium. However, it is known that the formation

of capillary bridges in a humid atmosphere is a thermally

activated process, with a continuum of activation energies and

hence relaxation times. Thus, in general it may take a very

long time to reach (or come close to) thermal equilibrium. In

the study by Maarten [31] for microcantilevers, at the relative

humidity 0.3, the average crack length (defined as the non-

contact part of the cantilever) decreased with increasing times

from ≈700 µm initially to≈550 µm after 2.5 h, to ≈ 400 µm

after 5 h, and to ≈ 375 µm after 10 h. After this time no

further decrease of the crack length was observed. In general,

the increase in adhesion and friction with increasing time, as

a result of thermally activated formation of capillary bridges,

has been studied in detail, and is of great importance in many

systems of fundamental or applied interest [40–42].

Another limitation of the theory presented in section 2

is that it is only valid if most of the relevant repulsive wall–

wall interaction occurs for separations ū that are small enough

that, for the actual physical system, there are enough asperity

contact regions (to obtain enough self-averaging) that the

analytical theory can be applied. That is, the analytical contact

mechanics theory is for an infinite system (thermodynamic

limit), and for a randomly rough surface (with a Gaussian

probability height distribution) there will always be infinitely

high asperities, and contact between two solids will occur

for any (average) separation ū between the solids. In fact,

for large ū we have the exact result p ∼ exp(−αū/hrms),

which shows that a repulsive pressure p will act between the

solids for arbitrary large separation ū. However, for finite-

sized systems, the highest asperities have a finite height, which

for macroscopic systems typically is of the order of ∼10hrms
(see appendix A in [23]), but in the context of MEMS may

be much smaller due to their small physical size. In fact,

de Boer has estimated the highest asperities in the crack-tip

process zone to be only≈3.7hrms. It is clear that the analytical

theory is only valid if the important repulsive contribution to

the work of adhesion occurs for separations ū < 3.7hrms.

In our applications to microcantilever adhesion most of the

relevant repulsive interaction occurs for ū < 3.2hrms so the

theory is likely to be at least semiquantitatively correct.

In the GW theory a similar problem is related to the

height of the highest asperities, but in addition the exact

form of the tail of the height distribution for large separation

matters a lot for the contact mechanics and in particular for

the relation between ū and p. However, this is an artifact of

the GW theory, and when the long-range elastic coupling is

taken into account, as in the theory of Persson, the contact

mechanics becomes much less dependent on the details of the

height distribution. This has been verified by finite element

method calculations [19] for polymer surfaces [16] where,

in spite of the fact that the height probability is rather non-

Gaussian for large asperity heights (see figure 14 in [17]),

the contact mechanics obeys the usual behavior with the

area of real contact proportional to the load and the average

interfacial separation depending on the squeezing pressure as

p ∼ exp(−αū/hrms), in good numerical agreement with

the Persson theory [17]. This can be explained by the fact

that, because of long-range elastic deformation, not only the

asperities close to the top of the Gaussian distribution will

make contact, but a larger range of asperity heights will be

involved (which is the reason why the asymptotic relation p ∼

exp(−αū/hrms) is exponential rather than Gaussian (reflecting

a Gaussian height distribution) p ∼ exp[−b(ū/hrms)
2] as in

the GW theory). This is illustrated in figure 16 for a situation

where this fact is particularly clear.

The analytical theory presented in section 2 for the

limiting case of an interface completely filled with fluid

(e.g. high relative humidity) indicates that the most important

property of the rough surface is the root-mean-square

roughness hrms, while other properties such as (for self-affine
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(a) local elastic deformation

(b) long-ranged elastic deformation

elastic solid

rigid solid

Figure 16. (a) In the Greenwood–Williamson (GW) contact
mechanics model only local (asperity) elastic deformations are
included. (b) In reality the elastic deformation is long ranged, and
asperities which never could be in contact in the GW theory because
they are too low could be in contact when the elastic deformation is
fully included in the analysis. For this reason the GW theory is much
more sensitive to the exact form of the probability distribution of
asperity heights for large asperity height than in a more accurate
analysis which includes the long-range elastic deformations.

fractal surfaces) the fractal dimension Df and the upper and

lower cut-off wavevectors q1 and q0 are much less important

because the parameter α in the relation p ∼ exp(−αū/hrms)

is very insensitive to these quantities [18]. This is also

likely to be the case for non-fractal surfaces. This fact is

consistent with experiments of van Zwol et al [32], who

observed that surfaces with very different q0 but the same root-

mean-square roughness hrms ≈ 1.5 nm exhibited the same

capillary adhesion. We conclude that the rms roughness gives

the predominant effect on the adhesive force due to capillary

bridges.

In the theory presented in section 2 we have neglected

plastic deformation of the solids and the disjoining pressure

due to adsorbed (water) layers. The problem of the influence of

plastic yielding on the contact mechanics was studied in [29],

where it was found to have a very small influence on the

capillary adhesion. I have analyzed the same problem using

the more accurate contact mechanics theory I have developed.

I find that the surface roughness with wavelength longer than

∼0.2 µm undergoes negligible plastic deformation, while

some plastic deformation occurs for roughness at shorter length

scales. Plastic deformation will tend to smoothen the surfaces

and hence reduce the stored elastic energy. This in turn will

enhance the capillary adhesion. I will report on this study

elsewhere.

The presence of adsorbed water layers on the hydrophilic

polysilicon surfaces used in the experiment [29] will also

play a role in the capillary adhesion process. Unfortunately,

a water adsorption isotherm does not currently exist for

polysilicon surfaces, which makes it impossible to definitively

determine the role of adsorbed water layers on the capillary

adhesion problem. However, the fact that we obtained good

agreement with experiment neglecting this effect for high

relative humidity indicates that it may not be very important

(for RH > 0.9) for the microcantilever applications discussed

above.

6. Summary and conclusion

I present a general theory for how the contact area and the

work of adhesion between two elastic solids with randomly

rough surfaces depends on the relative humidity. The surfaces

are assumed to be hydrophilic, and capillary bridges form at

the interface between the solids. For elastically hard solids

with relatively smooth surfaces, the area of real contact and

therefore also the sliding friction are maximal when there is

just enough liquid to fill out the interfacial space between the

solids, which typically occurs for hK ≈ 3hrms, where hK is the

height of the capillary bridge and hrms the root-mean-square

roughness of the (combined) surface roughness profile. For

elastically soft solids, the area of real contact is maximal for

very low humidity where the capillary bridges are able to pull

the solids into nearly complete contact. In both cases, the work

of adhesion is maximal (and equal to 2γ cos θ , where γ is

the liquid surface tension and θ the liquid–solid contact angle)

when dK ≫ hrms, corresponding to high relative humidity.

The theory is compared to experimental data for

microcantilever structures. The theory is in good agreement

with the data while the classical Greenwood–Williamson

theory fails qualitatively. I also present applications to rubber

wiper blades, where the theory can explain the large friction

observed in the so called ‘tacky region’ for nearly dry contacts,

where the capillary bridges pull the rubber into intimate contact

with the glass substrate over a large fraction of the nominal

contact area.
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